Innervation and blood supply to the walls of the chest cavity. Vegetative innervation of internal organs

  • Date: 03.03.2020

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_1.jpg" alt = "(! LANG pulmonary arteries: pulmonary veins, upper and lower"> Тема лекции: Крупные сосуды грудной полости: аорта, легочный ствол, легочные вены, верхняя и нижняя полые вены. Возрастные особенности. Лектор д.м.н., проф. Дюсембаева А.Т.!}

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_2.jpg" = "(! pulmonary veins, upper"> Цель лекции: изучить особенности строения и топографии аорты, легочного ствола, легочных вен, верхней и нижней полых!}

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_3.jpg" Characteristic "=" inferior vena cava. Structural features"> ПЛАН: Характеристика аорты, легочной артерии, легочных вен, верхней и нижней полых вен. Особенности строения и изменения артериальных стенок. Возрастные особенности.!}

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_4.jpg" = "(the body of LANG is located to the left of the aorta, to the left of the aorta) divided into three parts:"> Аорта Аорта (aorta), расположенна слева от средней линии тела, подразделяется на три части: восходящую часть, дугу аорты, нисходящую часть. Нисходящая часть аорты делится на грудную и брюшную части.!}

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_5.jpg" = "(! and rising"> Начальная часть аорты длиной около 6 см, выходящая из левого желудочка сердца и поднимающаяся вверх, называется восходящей аортой (pars ascendens aortae). Она покрыта перикардом, располагается в среднем средостении и начинается расширением, или луковицей аорты (bulbus aortae). Поперечник луковицы аорты составляет около 2,5-3 см. Внутри луковицы имеются три синуса аорты (sinus aortae), располагающихся между внутренней поверхностью аорты и соответствующей полулунной заслонкой клапана аорты. От начала восходящей аорты отходят правая и левая венечные артерии, направляющиеся к стенкам сердца.!}

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_6.jpg" = "(! level"> Восходящая часть аорты поднимается вверх позади и справа от легочного ствола и на уровне соединения II правого реберного хряща с грудиной переходит в дугу аорты. Здесь поперечник аорты уменьшается до 21-22 мм. Дуга аорты (arcus aortae), изгибаясь влево и кзади переходит в нисходящую часть аорты. В этом участке аорта несколько сужена - это перешеек аорты (isthmus aortae). К выпуклой стороне дуги аорты и к начальным отделам отходящих от нее крупных сосудов спереди прилежит левая плечеголовная вена. Под дугой аорты расположено начало правой легочной артерии, внизу и несколько левее - бифуркация легочного ствола, сзади - бифуркация трахеи. Между вогнутой полуокружностью дуги аорты и легочным стволом или началом левой легочной артерии проходит артериальная связка. Здесь от дуги аорты отходят тонкие артерии к трахее и бронхам (бронхиальные и трахеальные ветви).!}

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_7.jpg" = "(! by which"> ДУГА АОРТЫ И ЕЕ ВЕТВИ От дуги аорты отходят три крупные артерии, по которым кровь поступает к органам головы и шеи, верхним конечностям и к передней грудной стенке. Это плечеголовной ствол, направляющийся вверх и направо, затем левая общая сонная артерия и левая подключичная артерия.!}

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_8.jpg" = "(! Langshaft) , having a length of about 3 cm, departs"> Плечеголовной ствол (truncus brachiocephalicus). Плечеголовной ствол (truncus brachiocephalicus), имеющий длину около 3 см, отходит от дуги аорты справа на уровне II правого реберного хряща. Впереди от него проходит правая плечеголовная вена, сзади - трахея. Направляясь кверху и вправо, этот ствол не отдает никаких ветвей. На уровне правого грудино-ключичного сустава он делится на правые общую сонную и подключичную артерии. Левая общая сонная артерия и левая подключичная артерии отходят непосредственно от дуги аорты левее плечеголовного ствола.!}

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_9.jpg" = "(! lungs like"> Грудная аорта Первыми висцеральными ветвями грудной аорты являются бронхиальные ветви, которые питают легкие как орган. Следующими ветвями являются пищеводные. Далее к органам средостения Из париетальных ветвей задние межреберные и верхние диафрагмальные артерии На уровне IV поясничного позвонка брюшная аорта делится на две общие подвздошные артерии, залегающие забрюшинно. Каждая из них в свою очередь делится на наружную и внутреннюю подвздошную артерии.!}

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_10.jpg" = "(! cm, diameter 3-3.5 cm, whole"> Легочный ствол (truncus pulmonalis). Легочный ствол длиной 5-6 см, диаметром 3-3.5 см, целиком располагается внутриперикардиально. Легочный ствол идет наискось влево, впереди восходящей части аорты, которую он пересекает спереди. Под дугой аорты легочный ствол делится на правую и левую легочные артерии. Каждая легочная артерия идет к соответствующему легкому. Правая легочная артерия, несколько длиннее левой. Общая ее длина до деления на долевые и сегментарные ветви около 4 см, она лежит позади восходящей части аорты и верхней полой вены. В области ворот легкого впереди и под правым главным бронхом правая легочная артерия разделяется на три долевые ветви, каждая из которых в свою очередь делится на сегментарные ветви!}

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_11.jpg" = "(! veins."> Легочные вены Капилляры легкого собираются в венулы, которые сливаются в более крупные вены. В конечном итоге формируются по две легочные вены (venae pulmonаles), выходящие из каждого легкого. Они несут артериальную кровь из легких в левое предсердие. Легочные вены идут горизонтально к левому предсердию и каждая впадает отдельным отверстием в его верхнюю стенку. Легочные вены не имеют клапанов.!}

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_12.jpg" = "(! Footless LANG 5-8 cm:> a vein with a diameter of 21-25 mm is formed"> Верхняя полая вена Короткая, бесклапанная, длиной 5-8 см и диаметром 21-25 мм вена, образуется благодаря слиянию правой и левой плечеголовных вен позади места соединения хряща I правого ребра с грудиной. Верхняя полая вена направляется вниз и на уровне соединения III правого хряща с грудиной впадает в правое предсердие. Впереди верхней полой вены расположены тимус и передний край правого легкого, покрытый плеврой. Справа к вене прилежит медиастинальная плевра, слева - восходящая часть аорты, сзади - передняя поверхность корня правого легкого. В верхнюю полую вену справа впадает непарная вена, а слева - мелкие средостенные и перикардиальные вены. В верхнюю полую вену оттекает кровь от стенок грудной и частично брюшной полостей, головы, шеи и обеих верхних конечностей!}

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_13.jpg" = "(! the level of the intervertebral disc between"> Нижняя полая вена Самая крупная, бесклапанная, располагается забрюшинно, начинается на уровне межпозвоночного диска между IV и V поясничными позвонками, благодаря слиянию левой и правой общих подвздошных вен справа и несколько ниже бифуркации аорты. Нижняя полая вена направляется вверх по передней поверхности правой большой поясничной мышцы справа от брюшной части аорты. Нижняя полая вена проходит в одноименной борозде печени, где в нее впадают печеночные вены. Выйдя из борозды, нижняя полая вена проходит через одноименное отверстие сухожильного центра диафрагмы в заднее средостение, входит в полость перикарда и, будучи покрыта эпикардом, впадает в правое предсердие.!}

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_14.jpg" = "(! left pulmonary artery"> Возрастные особенности Окружность легочного ствола больше, чем окружность аорты. Правая и левая легочные артерии интенсивно развиваются в течении 1 года жизни. Артериальный проток, функционирующий до рождения имеет почти одинаковый размер с аортой. После рождения он быстро суживается и закрывается в 6-12 мес. Аорта имеет меньшую окружность, чем легочной ствол. После перерезки пупочных артерий окружность аорты уменьшается до 3 мес жизни, затем снова быстро растет и до взрослого состояния ее просвет увеличивается в 4,5 раза. Дуга аорты сплющена. Одновременно с установлением дыхания дуга аорты поднимается.!}

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_15.jpg" = "(! is shortened,"> До 5 мес жизни ввиду ускоренных темпов роста позвоночника нисходящая аорта как бы укорачивается, но затем устанавливаются ее обычные соотношения. Ветви отходящие к мозгу значительно развиваются до 3-4 летнего возраста, превосходя другие сосуды, этот период совпадает с периодом максимального развития мозга. Подключичная артерия превосходит диаметр общей подвздошной артерии. Эта разница сохраняется до полового созревания. Чревный ствол большой, мышечного типа. Расстояние между ним и верхней брыжеечной артерией на 2-2,4 мм больше, чем у взрослого. На 2-ой день после рождения в пупочных артериях появляется конечный тромб!}

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_16.jpg" = "(! First"> Верхняя и нижняя полые вены очень велики по отношению к массе тела. В первые месяцы после рождения они сужаются в результате более легкого опорожнения путем грудной аспирации. Верхняя полая вена короткая вертикальная, с диаметром (51 мм2), большим в первые 4 дня после рождения, чем диаметр нижней полой вены (20 мм2). После рождения поверхность разреза нижней полой вены уменьшается до 14 мм2, а после первого года жизни увеличивается быстрее, чем верхней. На 2 мес пупочная вена и венозный проток закрываются.!}

Src = "https://present5.com/presentacii-2/20171208%5C7130-lek__2_sss_prof_dyusembaeva_a_t.ppt%5C7130-lek__2_sss_prof_dyusembaeva_a_t_17.jpg" = "(! LANG:> Thanks for the attention">!}

0

The blood supply to the cranio-dorsal section of the chest wall occurs through the costal trunk, truncus costocervicalis. In this case, only the first dorsal intercostal artery departs directly from it, while the next two dorsal intercostal arteries depart from the uppermost intercostal artery in the cat, and from the thoracic vertebral artery in the dog.

The next fourth is the twelfth dorsal intercostal arteries, aa. intercostales dorsales IV - XII, depart, with a slight displacement of the right and left sides relative to each other, from the thoracic aorta, aorta thoracica. Each dorsal intercostal artery, a. intercostalis dorsalis, gives the dorsal branch, ramus dorsalis, and that, in turn, the spinal branch, ramus spinalis, for the blood supply to the spinal cord and its membranes. The dorsal branches, together with the ventral muscle branches, rami musculares, provide blood supply to the dorsal and pectoral muscles and into the skin and anastomose with the corresponding ventral intercostal branches of the internal thoracic artery. The segmental dorsal costo-abdominal artery located at the caudal edge of the last rib, a. costoabdominalis dorsalis, branches similar to the intercostal arteries.

Internal thoracic artery, a. thoracica interna, is separated from the subclavian artery medial to the first rib. First, it goes in the pleural fold, and at the bottom of the chest cavity it passes between the cartilaginous parts of the ribs and the transverse pectoral muscle. In each intercostal space, it departs from it along the ventral intercostal branch, ramus intercostalis ventraiis, which anastomoses with

the corresponding muscular branch of the dorsal intercostal branch. The branches of the internal thoracic artery vascularize the ventral and ventro-lateral parts of the chest wall with the mammary glands located here, the ventral part of the mediastinum, and in young animals the thymus.

Rice. 1. The arteries of the entrance to the chest cavity and chest wall of the cat, view from the left side (according to Opitz, 1961)

A I costa, B IV costa, C X costa; D sternum; E trachea; F lobus cranialis pulmonis dextri; G cor; G 'auricula sinistra a m. iliocostalis thoracis; b m. longissimus thoracis; with m. spinalis et semispinalis thoracis et ccrvicis; d m. splcnius; e m. serratus ventraiis cervicis; f m. scalenus; g m. longus capitis; A m. sternocephalicus; i mm. pectoralcs superficialcs; i'm. pcctoralis profundus; k mm. intercostalcs externi; k'mm. intercostales interni; l m. rectus abdominis; m m. transversus abdominis

1 arcus aortae; 2 truncus brachiocephalicus; 3 a. subclavia sinistra; 3 "a. Thoracica externa; 4 a. Vertebralis; 5 truncus costocervicalis; 5" a. Intercostalis dorsalis I, ramus collateralis, 5 "ramus dorsalis; 6 a. Cervicalis profunda; 6" a. intercostalis suprema; 7 a. scapularis dorsalis; 8 a. cervicalis superficialis, 8 "ramus ascendens; 9 a. thoracica lateralis; 10 a. axillaris; 11 a. thoracica interna, 11" ramus intercostalis ventraiis, 12 rami perforantcs, 12 "common initial trunk for rami intercostales ventrales I et II; 13 a .carotis communis; 14 aa. intercostales dorsales, 14 I, 14 II, 14 III, 14 IV rami cutanei latcralcs; 15 a. costoabdominalis, 15 I, 15 IV rami cutanei laterales

At the level of the VII-VIII intercostal spaces, the internal thoracic artery is divided into the musculophrenic and cranial epigastric arteries. Muscular-diaphragmatic artery, a. musculophrenica, pierces the diaphragm at the site of its attachment and stretches under the peritoneum along the costal arch to the XI rib. It supplies blood to the anterior abdominal muscles and the diaphragm. Ventral intercostal branches, rami intercostales ventrales depart from the muscular-phrenic artery. Cranial epigastric artery, a. epigastrica cranialis, like the muscular-diaphragmatic artery, passes through the diaphragm, but then goes along the ventral abdominal wall along the lateral edge of the rectus abdominis muscle in the caudal direction. In the angle formed by the xiphoid process of the sternum and the costal arch, it gives off the superficial cranial epigastric artery, and. epigastrica cranialis superficialis, vascularizing skin and mammary glands located here.

From the axillary artery for the blood supply to the ventro-lateral regions of the chest wall at the level of the 1st rib, first the external thoracic artery departs, a. thoracica externa, and then the lateral thoracic artery, a. thoracica lateralis. The first provides blood to the pectoral muscles, the second branches in the ventral part of the latissimus dorsi muscle and the subcutaneous muscle of the trunk, as well as in females in the mammary glands.

Bronchopedic artery, a. broncho-oesophagea, in a dog steam room, on each side departs from the fourth, fifth or sixth dorsal intercostal artery or directly from the thoracic aorta and divides into the bronchial branch, ramus bronchalis, and into the esophageal branch, ramus oesophageus. In a cat, the bronchial and esophageal branches do not have a common trunk, but separate from the fifth dorsal intercostal artery or directly from the thoracic aorta at the level of the IV intercostal space. The bronchial branch feeds the main bronchus and accompanies it in its branching inside the lung. The esophageal ramus, along with other branches from the thoracic aorta, serves the thoracic esophagus.

CHEST CAVITY [cavum thoracis(PNA, BNA, JNA); syn. cavum pectoris] - the space located in the chest and limited by the intrathoracic fascia.

G.'s form of the item does not coincide with the form of the chest (see), since in G. of the item the diaphragm protrudes from below, and behind the body of the thoracic vertebrae. G. of the item includes two serous pleural sacs and the mediastinum located between them (Fig. 1). In the lower part of the mediastinum (see) there is a third serous cavity, limited by the pericardium (see). The lungs are located in the pleural sacs formed by the pleura (see). Between the parietal and visceral pleura (see) there is a slit-like space filled with serous fluid - the pleural cavity (cavum pleurae), which plays an important fiziol, a role in the respiratory mechanism (see). In the pleural cavity with inflammatory diseases and injuries of organs of G. of the item, air, serous fluid, pus, blood can accumulate.

Mediastinum (mediastinum)- the space located between the leaves of the mediastinal pleura, the intrathoracic fascia (in front and behind) and the diaphragmatic fascia (below), in which there are various vital organs, large vessels and nerves (heart, thymus, esophagus, aorta, etc.) ... Each organ of the mediastinum is covered with a fascial capsule; between the organs there is loose connective tissue, edges can contribute to the spread of purulent processes in the mediastinum and on the neck.

Development of the chest cavity connected with the transformations of the secondary body cavity of the embryo - the coelom (see), which is formed as a result of the division of the lateral mesoderm (see) into somatic and splanchnic. Due to the fact that the dorsal mesentery is not formed in the cranial part of the body of the embryo and the intestinal tube is located directly on the posterior wall of the body, the anlage of the heart is located in front of the future pharynx (Fig. 2) and the splanchnic mesoderm passes from it to the heart. As a result, a pericardial cavity (cavum pericardii) is formed between the somatic and splanchnic mesoderm, which connects the peritoneal-pericardial canal (canalis pericardioperitoneal] s) with the peritoneal cavity (cavum peritonei). On the 4-5th week. development, the formation of a transverse septum (septum transversum) occurs, the edges partially isolates the thoracic part of the coelom from the abdominal one. In the following weeks of development (6th and 7th), two pleuropericardial folds (plicae pleuropericardiales), separating the pericardial cavity from the lateral narrow coelomic spaces - pleural cavities, branch off from the dorsolateral walls and grow in the cranial and medial directions. At the same time, there is a growth of the second pair of folds - pleuroperitoneal (plicae pleuroperitoneales), which, connecting with the transverse septum, separate the pleural and pericardial cavities from the peritoneal. The rudiments of the lungs grow into narrow pleural cavities and enlarge them as they develop. Incomplete development of pleuroperitoneal folds is accompanied by a congenital defect of the diaphragm (usually on the left) and the possibility of a diaphragmatic hernia (see. Diaphragm).

Blood supply organs of the chest cavity are carried out from various sources: from the ascending (coronary arteries supplying the heart) and thoracic aorta (esophageal, mediastinal, bronchial, pericardial branches, going to the organs of the same name). The parietal pleura receives branches from the intercostal and superior phrenic arteries, as well as the branches of the subclavian artery. The outflow of venous blood occurs in numerous veins (esophageal, bronchial, pericardial, mediastinal, etc.), flowing into the unpaired and semi-unpaired veins, and from the organs of the upper mediastinum - into the subclavian veins. Lymph, vessels of G.'s organs of the item take lymph to the regional nodes of the mediastinum.

Innervation organs of the chest cavity comes from the vegetative plexuses: superficial and deep extracardiac, anterior and posterior pulmonary, esophageal and aortic, formed due to the branches of the vagus and recurrent nerves, the sympathetic trunk, branches of the phrenic nerve. The listed plexuses are interconnected by multiple connections, as a result of which we can talk about a single cervicothoracic autonomic nerve plexus.

The thoracic aorta is a continuation of the aortic arch. It lies in the posterior mediastinum on the thoracic spine. After passing through the aortic opening of the diaphragm, it continues into the abdominal aorta.

The branches of the thoracic aorta feed the walls of the chest, all organs of the chest cavity (with the exception of the heart) and are subdivided into parietal (parietal) and visceral (visceral). The parietal branches of the thoracic aorta include:

1) the posterior intercostal arteries in the amount of 10 pairs (the first two pairs ((depart from the subclavian artery) provide blood to the walls of the thoracic and partially abdominal cavity, the spine and spinal cord;

2) the upper phrenic arteries - the right and left go to the diaphragm, supplying blood to its upper surface.

The internal branches of the thoracic aorta include:

1) the bronchial branches pass into the lungs through their gates and form "in them numerous anastomoses with the branches of the pulmonary artery of the pulmonary trunk, emerging from the right ventricle;

2) the esophageal branches go to the esophagus (its walls);

3) the mediastinal (mediastinal) branches supply blood to the lymph nodes and tissue of the posterior mediastinum;

4) the pericardial branches go to the posterior pericardium.

The abdominal aorta lies in the retroperitoneal space of the abdominal cavity on the spine, next to the inferior vena cava (left). It gives off a number of branches to the walls (parietal branches) and to the organs (internal branches) of the abdominal cavity.

The parietal branches of the abdominal aorta are:

1) the lower phrenic artery (steam room) supplies blood to the lower surface of the diaphragm and gives a branch to the adrenal gland (upper adrenal artery);

2) lumbar arteries - four paired arteries feed the lumbar spine, spinal cord, lumbar muscles and abdominal wall.

The internal branches of the abdominal aorta are divided into paired and unpaired, depending on which organs of the abdominal cavity they supply with blood. Paired internal branches of the abdominal aorta 3 pairs:

1) the middle adrenal artery;

2) renal artery;

3) the testicular artery in men and the ovarian artery in women.

The unpaired internal branches include the celiac trunk, superior and inferior mesenteric arteries.

1) The celiac trunk starts from the abdominal aorta at the level of the XII thoracic vertebra and with its branches supplies blood to the unpaired organs of the upper abdominal cavity: the stomach, liver, gallbladder, spleen, pancreas and partly the duodenum (left gastric, common hepatic and splenic arteries) ...



2) The superior mesenteric artery departs from the abdominal aorta at the level of the I lumbar vertebra and with its branches supplies blood to the pancreas, duodenum (partially), jejunum, ileum, cecum with appendix, ascending and transverse colon.

3) The inferior mesenteric artery begins from the abdominal aorta at the level of the III lumbar vertebra and with its branches supplies the descending and sigmoid colon and the upper part of the rectum.

All branches going to the internal organs, especially to the intestines, strongly anastomose with each other, forming a single system of arteries of the abdominal organs.

Venous blood from the walls and organs of the chest (with the exception of the heart) flows into the azygos and semi-unpaired veins, which are a continuation of the right and left ascending lumbar veins. They are located in the posterior mediastinum to the right and left of the aorta. The posterior intercostal veins of the right side, the veins of the vertebral plexuses, the semi-unpaired vein, as well as the veins of the chest cavity organs flow into the azygos vein: esophageal, bronchial, pericardial and mediastinal cords. At the level of IV-V thoracic vertebrae, the azygos vein flows into the superior vena cava 5 semi-unpaired vein only 4-5 lower left posterior intercostal veins flow, an accessory semi-unpaired vein running from top to bottom, receiving 6-7 upper left posterior intercostal veins, veins of the vertebral plexuses, and esophageal and mediastical veins. At the level of UI-USH, sometimes X thoracic vertebrae, the semi-unpaired vein deviates steeply to the right and flows into the unpaired eyelid.

Inferior vena cava is the largest vein. Its diameter is 3.5 cm, its length is about 20 cm. It is located on the back wall of the abdomen to the right of the abdominal aorta. It is formed at the level of IV-V lumbar vertebrae by the fusion of the left and right common iliac veins. Each common iliac vein is formed in turn from the confluence of the internal and external iliac veins on its side. The inferior vena cava goes up and somewhat to the right, lies in the groove of the liver of the same name, taking the hepatic veins. Then it passes through the opening of the diaphragm of the same name into the chest cavity and immediately flows into the right atrium.



Through the inferior vena cava blood flows into the right atrium from the veins of the lower half of the body: from the abdomen, pelvis and lower extremities.

The veins of the abdomen are divided into parietal and internal. The parietal veins of the abdomen correspond to the parietal arteries extending from the abdominal aorta (lumbar veins, right and left, four on each side, inferior phrenic veins), and flow into the inferior vena cava. The internal veins of the paired abdominal organs: testicular in men (ovarian in women), the renal and adrenal ones correspond to the nominative arteries of the abdominal aorta and flow into the inferior vena cava (left testicular and ovarian veins flow into the left renal vein), and 2- 3-4 hepatic veins. The internal veins of the remaining unpaired abdominal organs do not flow into the inferior vena cava. Blood from these veins flows through the portal vein to the liver and from the liver through the hepatic veins enters the inferior vena cava.

The veins of the pelvis lie next to the arteries, have the same names and are also subdivided into parietal and internal veins. They carry blood to the internal iliac vein. The parietal veins include the superior and inferior gluteal veins, obturator veins, lateral sacral veins, and iliopsoas veins. All of them collect blood from the muscles of the pelvic girdle and thigh, partly from the muscles of the abdomen, and usually accompany the arteries of the same name in pairs. These veins have valves. The visceral veins include the internal genital vein, urinary veins, lower and middle rectal veins, and uterine veins. Around the pelvic organs, they form venous plexuses, which are widely anastomosed with each other: urinary, rectal, prostate, vaginal, etc.

The external iliac vein runs parallel to the artery of the same name and receives blood from the femoral vein, of which it is a continuation.

The structure of the lymphatic system. Lymph. Lymph formation, its composition. The importance of the lymphatic system for the body.

Lymphatic system- It is an integral part of the cardiovascular system, which carries out the conduction of lymph from organs and tissues to the venous bed and maintains the balance of tissue fluid in the body. The study of the lymphatic system and its pathology is called lymphology. The lymphatic system is a system of lymphatic capillaries, lymphatic vessels, trunks and ducts branched in organs and tissues. Along the path of the lymphatic vessels are numerous lymph nodes related to the organs of the immune system. As part of the microvasculature, the lymphatic system absorbs water, colloidal solutions, emulsions, suspensions of insoluble particles from tissues and transfers them in the form of lymph into the general bloodstream. In pathology with lymph, microbial bodies can be transferred from the foci of inflammation, tumor cells, etc.

According to the structure and functions in the lymphatic system, there are: lymphatic capillaries (lymphocapillary vessels), lymphatic vessels, lymphatic trunks and lymphatic ducts, from which lymph enters the venous system.

Lymphatic capillaries are the initial link, the "roots" of the lymphatic system. In them, colloidal solutions of proteins are absorbed from the tissues, drainage of tissues additional to the veins is carried out: absorption of water and crystalloids dissolved in it, removal of foreign particles from tissues, etc. Lymphatic capillaries are found in all organs and tissues of the human body, except for the brain and spinal cord, their membranes, eyeball, inner ear, epithelial cover of the skin and mucous membranes, cartilage, spleen parenchyma, bone marrow and placenta. Unlike blood capillaries, lymphatic capillaries have the following features:

1) they do not open into the intercellular spaces, but end blindly;

2) when connected to each other, they form closed lymphocapillary networks;

3) their walls are thinner and more permeable than the walls of blood capillaries;

4) their diameter is many times greater than the diameter of blood capillaries (up to 200 microns and 5-30 microns, respectively).

Lymphatic vessels are formed by the fusion of lymphatic capillaries. They are a system of manifolds containing valves and directing the flow of lymph in one direction. In the locations of the valves, the lymphatic vessels are somewhat thinner than in the intervalvular spaces. Due to alternating constrictions and enlargements, the lymphatic vessels have a characteristic clearly-shaped appearance.

Lymphatic trunks and lymphatic ducts are large vector lymphatic vessels that carry lymph from areas of the body to the venous angle at the base of the neck. Lymph flows through the lymphatic vessels to the lymphatic trunks and ducts, passing through the lymph nodes, which are not part of the lymphatic system, but perform barrier - filtration and immune functions. There are two largest lymphatic ducts.

The right lymphatic duct collects lymph from the right half of the head and neck, the right half of the chest, the right upper limb and flows into the right venous angle at the confluence of the right internal jugular and subclavian veins. This is a relatively short vessel 10-12 mm long, which more often (in 80% of cases) has 2-3 or more stems instead of one mouth. The thoracic lymphatic duct is the main one, so (through it flows lymph from all other parts of the body, except for the named ones. It flows into the left venous angle at the confluence of the left internal jugular and subclavian veins. It has a length of 30 - 41 cm.

Lymph is a liquid tissue found in the lymphatic vessels and lymph nodes of a person. It is a colored liquid of an alkaline reaction, which differs from plasma in its lower protein content. The average protein content in lymph is 2%, although the value in different organs varies significantly depending on the permeability of blood capillaries, amounting to 6% in the liver, 3-4% in the gastrointestinal tract, etc. The lymph contains prothrombin and fibrinogen, so it can clot. It also contains glucose and mineral salts (about 1%). A person produces an average of 2 liters of lymph per day (with fluctuations from 1 to 3 liters). The main functions of lymph:

1) maintains the constancy of the composition and volume of the intercellular fluid;

2) provides a humoral connection between the extracellular fluid and blood, and also transfers hormones;

3) participates in the transport of nutrients (fat particles - chylomicrons) from the alimentary canal;

4) transfers immunocompetent cells - lymphocytes;

5) is a liquid depot (2 liters with fluctuations from 1 to 3 liters).

Lymphatic formation is associated with the transfer of water and substances dissolved in the blood plasma from the blood capillaries to the tissues, and from the tissues to the lymphatic capillaries. The source of lymph is tissue fluid. It fills the intercellular spaces of all tissues and is an intermediate medium between blood and body cells. Through the tissue fluid, the cells receive all the nutrients and oxygen necessary for their life, and metabolic products, including carbon dioxide, are released into it. Tissue fluid, especially when a lot of it is formed, enters the tissue lymphatic capillaries. Once in the lymphatic capillary, tissue fluid is called lymph. Thus, lymph comes from interstitial fluid.

Unlike blood vessels, through which both blood flow to the tissues of the body and its outflow from them occur, lymphatic vessels serve only for the outflow of lymph, i.e. return tissue fluid to the blood. Lymphatic vessels are a drainage system that removes excess tissue fluid in the organs.

Since the rate of lymph formation is low, the average speed of movement of lymph through the vessels is also small and amounts to 4-5 mm / s. In the lymphatic vessels, the main force that ensures the movement of lymph from the places of its formation to the confluence of the ducts into the large veins of the neck is the rhythmic contractions of the lymphangions. Lymphangions, which can be considered as tubular lymphatic microheart, contain all the necessary elements for active transport of lymph: a developed muscle cuff and valves. As the lymph flows from the capillaries into the small lymphatic vessels, the lymphangions are filled with lymph and their walls are stretched, which leads to the excitation and contraction of the smooth muscle cells of the muscle cuff. Contraction of smooth muscles in the wall of the lymphangion increases the pressure inside it to a level sufficient to close the distal valve and open the proximal one. As a result, the lymph moves to the next (overlying) lymphangion. Such successive contractions of the lymphangions lead to the movement of lymph through the lymphatic collectors to the place of their confluence into the venous system. Thus, the work of the lymphangions resembles the activity of the heart. As in the activity of the heart, in the lymphangion cycle there are systole and diastole, the strength of the contraction of the smooth muscles of the lymphangion is determined by the degree of their stretching by the lymph in diastole, and the contraction of the lymphangions is triggered and controlled by a single action potential.

In addition to the main mechanism, the following secondary factors contribute to the movement of lymph through the vessels:

1) continuous formation of tissue fluid and its transition from tissue spaces to lymphatic capillaries, creating a constant pressure;

2) tension of adjacent fasciae, muscle contraction, organ activity;

3) contraction of the capsule of the lymph nodes;

4) negative pressure in large veins and chest cavity;

5) an increase in the volume of the chest during inhalation, which causes the suction of lymph from the lymphatic vessels;

6) rhythmic stretching and massage of skeletal muscles.

When lymph moves, it passes through one or more lymph nodes - the peripheral organs of the immune system that act as biological filters. There are a total of 500 to 1000 of them in the body. Lymph nodes are pinkish-gray in color, round, ovoid, bean-shaped and even ribbon-like. Their sizes range from a pinhead (0.5-1 mm) to a large bean (30-50 mm or more in length). Lymph nodes are located, as a rule, near blood vessels, more often next to large veins, usually in groups from several nodes to 10 or more, sometimes one at a time. They are located under the corner of the lower jaw, on the neck, armpit, in the elbow bend, in the mediastinum, abdominal cavity, groin, pelvic region, popliteal fossa and other places. Several (2-4) carrying lymphatic vessels enter the lymph node, 1-2 outgoing lymphatic vessels exit, through which lymph flows from the node.

In the lymph node, a darker cortical substance is distinguished, located in the peripheral regions closer to the capsule, and a lighter medulla, which occupies the central part closer to the gate of the node. The basis (stroma) of these substances is the reticular tissue. In the cortex there are lymphatic follicles (lymphoid nodules) - rounded formation with a diameter of 0.5-1 mm. In the loops of the reticular tissue that make up the stroma of the lymphoid nodules, there are lymphocytes, lymphoblasts, macrophages and other cells. Reproduction of lymphocytes occurs in lymphoid nodules with a multiplication center. On the border between the cortical and medullary substance of the lymph node, a strip of lymphoid tissue is microscopically isolated, called the pericardial substance, a thymus-dependent zone containing mainly T-lymphocytes. In this zone, there are postcapillary venules, through the walls of which lymphocytes migrate into the bloodstream. The medulla of the lymph node consists of pulp cords, the stroma of which is also made up of the reticular tissue. The pulp cords go from the inner parts of the cortical substance to the gate of the lymph node and, together with the lymphoid nodules, form a B-dependent zone. In this zone, the multiplication and maturation of plasma cells that synthesize antibodies take place. B-lymphocytes and macrophages are also located here.

The blood vessels of the human upper back and chest include the main arteries and veins, as well as the heart. These vital structures are critical to the process of pumping venous blood into the lungs for gas exchange, as well as pumping blood with oxygen to body tissues to support their metabolic functions.

The heart is the pump of the body's circulatory system, which is responsible for the movement of blood throughout the body. The heart acts as a double-acting pump as it pumps venous blood to the lungs and oxygenated blood to the tissues of the body with every heartbeat ... [Read below]

  • Chest and upper back

[Top start] ... The heart is mainly composed of cardiac muscle tissue, which requires a constant supply of oxygen to the blood. The left and right coronary arteries provide this blood supply to meet the heart's own energy needs. A small blockage in the coronary arteries leads to chest pain, this is called angina pectoris; complete blockage of the coronary arteries leads to myocardial infarction, more commonly known as a heart attack.

Pulmonary arteries and veins

The pulmonary arteries and pulmonary veins provide vital channels, but only provide a short distance of blood flow between the heart and lungs. Leaving the heart from the right ventricle, venous blood flows through the large pulmonary trunk before dividing into the left and right pulmonary arteries. The pulmonary arteries carry blood to the huge structure of small arterioles and capillaries in the lungs, where they are freed from carbon dioxide and receive oxygen from the air in the alveoli of the lungs. These capillaries merge into larger venules, which later merge into the left and right pulmonary veins. Each pulmonary vein carries blood from the lungs back to the heart, from where it returns through the left atrium.

Oxygenated blood leaves the left ventricle of the heart and enters the aorta, the largest artery in the human body. The ascending aorta, located above the heart, before it makes a 180-degree turn to the left, is called the aortic arch. From there, it runs posteriorly from the heart of the thoracic aorta towards the abdominal cavity.

The branches of the aorta, passing through the chest, branch into several large arteries, as well as many small ones.
The left and right coronary arteries branch off from the ascending aorta, which supplies the heart with its vital parts.

The arch of the branches of the aorta consists of three large arteries - the brachiocephalic trunk, the left common carotid artery and the left subclavian artery. These arteries collectively provide oxygen to the head and arms.

The thoracic aorta continues with many small arteries that supply blood to the organs, muscles and skin of the chest before entering the abdomen, into the abdominal aorta.
Blood from the abdominal aorta supplies oxygen and nutrients to the vital organs of the abdominal cavity through the arteries of the celiac trunk and the common hepatic artery.

Completion of the circulatory cycle

At the end of the circulatory cycle, the veins of the upper body carry blood with decay products and carbon dioxide from the tissues of the body back to the heart, from where it again flows through the lungs to all organs of the body.

Blood returning to the heart from the lower torso and legs travels to the upper torso, into a large vein called the inferior vena cava. The inferior vena cava draws blood from the hepatic vein and the diaphragmatic vein before entering the right atrium of the heart. The blood returning from the head enters the trunk through the left and right jugular veins, and the blood returning from the hands leaves through the left and right subclavian veins.

The jugular and subclavian veins on each side merge to form the left and right brachiocephalic trunks, which merge into the superior vena cava. Several small veins that carry blood from the organs, muscles, and skin of the upper torso also drain into the superior vena cava, which carries blood from the arms and head to the right atrium of the heart.