Тригонометрические свойства синусов и косинусов. Тригонометрические функции числового аргумента

  • Дата: 23.09.2019

Даны определения обратных тригонометрических функций и их графики. А также формулы, связывающие обратные тригонометрические функции, формулы сумм и разностей.

Определение обратных тригонометрических функций

Поскольку тригонометрические функции периодичны, то обратные к ним функции не однозначны. Так, уравнение y = sin x , при заданном , имеет бесконечно много корней. Действительно, в силу периодичности синуса, если x такой корень, то и x + 2πn (где n целое) тоже будет корнем уравнения. Таким образом, обратные тригонометрические функции многозначны . Чтобы с ними было проще работать, вводят понятие их главных значений. Рассмотрим, например, синус: y = sin x . Если ограничить аргумент x интервалом , то на нем функция y = sin x монотонно возрастает. Поэтому она имеет однозначную обратную функцию, которую называют арксинусом: x = arcsin y .

Если особо не оговорено, то под обратными тригонометрическими функциями имеют в виду их главные значения, которые определяются следующими определениями.

Арксинус (y = arcsin x ) - это функция, обратная к синусу (x = sin y

Арккосинус (y = arccos x ) - это функция, обратная к косинусу (x = cos y ), имеющая область определения и множество значений .

Арктангенс (y = arctg x ) - это функция, обратная к тангенсу (x = tg y ), имеющая область определения и множество значений .

Арккотангенс (y = arcctg x ) - это функция, обратная к котангенсу (x = ctg y ), имеющая область определения и множество значений .

Графики обратных тригонометрических функций

Графики обратных тригонометрических функций получаются из графиков тригонометрических функций зеркальным отражением относительно прямой y = x . См. разделы Синус, косинус , Тангенс, котангенс .

y = arcsin x


y = arccos x


y = arctg x


y = arcctg x

Основные формулы

Здесь следует особо обратить внимание на интервалы, для которых справедливы формулы.

arcsin(sin x) = x при
sin(arcsin x) = x
arccos(cos x) = x при
cos(arccos x) = x

arctg(tg x) = x при
tg(arctg x) = x
arcctg(ctg x) = x при
ctg(arcctg x) = x

Формулы, связывающие обратные тригонометрические функции

Формулы суммы и разности


при или

при и

при и


при или

при и

при и


при

при


при

при

1. Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол . С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике. Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (ряда Фурье). Данные функции часто появляются при решении дифференциальных и функциональных уравнений.

2. К тригонометрическим функциям относятся следующие 6 функций: синус , косинус , тангенс ,котангенс , секанс и косеканс . Для каждой из указанных функций существует обратная тригонометрическая функция.

3. Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга . На приведенном ниже рисунке изображен круг радиусом r=1. На окружности обозначена точка M(x,y). Угол между радиус-вектором OM и положительным направлением оси Ox равен α.

4. Синусом угла α называется отношение ординаты y точки M(x,y) к радиусу r:
sinα=y/r.
Поскольку r=1, то синус равен ординате точки M(x,y).

5. Косинусом угла α называется отношение абсциссы x точки M(x,y) к радиусу r:
cosα=x/r

6. Тангенсом угла α называется отношение ординаты y точки M(x,y) к ee абсциссе x:
tanα=y/x,x≠0

7. Котангенсом угла α называется отношение абсциссы x точки M(x,y) к ее ординате y:
cotα=x/y,y≠0

8. Секанс угла α − это отношение радиуса r к абсциссе x точки M(x,y):
secα=r/x=1/x,x≠0

9. Косеканс угла α − это отношение радиуса r к ординате y точки M(x,y):
cscα=r/y=1/y,y≠0

10. В единичном круге проекции x, y точки M(x,y) и радиус r образуют прямоугольный треугольник, в котором x,y являются катетами, а r − гипотенузой. Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом:
Синусом угла α называется отношение противолежащего катета к гипотенузе.
Косинусом угла α называется отношение прилежащего катета к гипотенузе.
Тангенсом угла α называется противолежащего катета к прилежащему.
Котангенсом угла α называется прилежащего катета к противолежащему.
Секанс угла α представляет собой отношение гипотенузы к прилежащему катету.
Косеканс угла α представляет собой отношение гипотенузы к противолежащему катету.

11. График функции синус
y=sinx, область определения: x∈R, область значений: −1≤sinx≤1

12. График функции косинус
y=cosx, область определения: x∈R, область значений: −1≤cosx≤1

13. График функции тангенс
y=tanx, область определения: x∈R,x≠(2k+1)π/2, область значений: −∞

14. График функции котангенс
y=cotx, область определения: x∈R,x≠kπ, область значений: −∞

15. График функции секанс
y=secx, область определения: x∈R,x≠(2k+1)π/2, область значений:secx∈(−∞,−1]∪∪

  • 3. Нечетная функция.
  • 7. Промежутки, на которых функция положительна: (2*pi*n; pi+2*pi*n)
  • 8. Промежутки, на которых функция отрицательна: (-pi + 2*pi*n; 2*pi*n)
  • 9. Промежутки возрастания: [-pi/2 +2*pi*n; pi/2 +2*pi*n]
  • 10. Промежутки убывания:
  • 11. Точки минимума: -pi/2 +2*pi*n
  • 12. Минимум функции: -1
  • 13. Точки максимума: pi/2 +2*pi*n
  • 14. Максимум функции: 1
  • Свойства косинуса

    • 1. Область определения: вся числовая ось
    • 2. Область значений: [-1;1]
    • 3. Четная функция.
    • 4. Наименьший положительный период: 2*pi
    • 5. Координаты точек пересечения графика функции с осью Ох: (pi/2 +pi*n; 0)
    • 6. Координаты точек пересечения графика функции с осью Оу: (0;1)
    • 7. Промежутки, на которых функция положительна: (-pi/2 +2*pi*n; pi/2 +2*pi*n)
    • 8. Промежутки, на которых функция отрицательна: (pi/2 +2*pi*n; 3*pi/2 +2*pi*n)
    • 9. Промежутки возрастания: [-pi + 2*pi*n; 2*pi*n]
    • 10. Промежутки убывания:
    • 11. Точки минимума: pi+2*pi*n
    • 12. Минимум функции: -1
    • 13. Точки максимума: 2*pi*n
    • 14. Максимум функции: 1

    Свойства тангенса

    • 1. Область определения: (-pi/2 +pi*n; pi/2 +pi*n)
    • 3. Нечетная функция.
    • 5. Координаты точек пересечения графика функции с осью Ох: (pi*n; 0)
    • 6. Координаты точек пересечения графика функции с осью Оу: (0;0)
    • 9. Функция возрастает на промежутках (-pi/2 + pi*n; pi/2 + pi*n)

    Свойства котангенса

    • 1. Область определения: (pi*n; pi +pi*n)
    • 2. Область значений: вся числовая ось
    • 3. Нечетная функция.
    • 4. Наименьший положительный период: pi
    • 5. Координаты точек пересечения графика функции с осью Ох: (pi/2 + pi*n; 0)
    • 6. Координаты точек пересечения графика функции с осью Оу: нет
    • 7. Промежутки, на которых функция положительна: (pi*n; pi/2 +pi*n)
    • 8. Промежутки, на которых функция отрицательна: (-pi/2 +pi*n; pi*n)
    • 9. Функция убывает на промежутках (pi*n; pi +pi*n)
    • 10. Точек максимума и минимума нет.

    На рисунке ниже представлены несколько единичных окружностей, в которых указаны знаки синуса, косинуса, тангенса и котангенса в различных координатных четвертях.