Спектр. Условия образования спектров излучения (эмиссии)

  • Дата: 11.10.2019

Спектральный анализ подразделяют на несколько самостоятельных методов. Среди них выделяют: инфракрасную и ультрафиолетовую спектроскопию, атомно-абсорбционный, люминесцентный и флуоресцентный анализ, спектроскопию отражения и комбинационного рассеяния, спектрофотометрию, рентгеновскую спектроскопию, а также ряд других методов.

Абсорбционный спектральный анализ основан на изучении спектров поглощения электромагнитного излучения. Эмиссионный спектральный анализ проводится по спектрам испускания атомов, молекул или ионов, возбужденных различными способами.

Атомно-эмиссионный спектральный анализ

Спектральным анализом часто называют только атомно-эмиссионный спектральный анализ, который основан на исследовании спектров испускания свободных атомов и ионов в газовой фазе. Его проводят в области длин волн 150-800 нм. В источник излучения вводят пробу исследуемого вещества, после чего в нем происходит испарение и диссоциация молекул, а также возбуждение образовавшихся ионов. Они испускают излучение, которое фиксируется регистрирующим устройством спектрального прибора.

Работа со спектрами

Спектры проб сравнивают со спектрами известных элементов, которые можно найти в соответствующих таблицах спектральных линий. Так узнают состав анализируемого вещества. Количественный анализ подразумевает концентрации данного элемента в анализируемого веществе. Ее узнают по величине сигнала, например, по степени почернения или оптической плотности линий на фотопластинке, по интенсивности светового потока на фотоэлектрическом приемнике.

Виды спектров

Непрерывный спектр излучения дают вещества, находящиеся в твердом или жидком состоянии, а также плотные газы. В таком спектре нет разрывов, в нем представлены волны всех длин. Его характер зависит не только от свойств отдельных атомов, но и от их взаимодействия друг с другом.

Линейчатый спектр излучения характерен для веществ в газообразном состоянии, при этом атомы почти не взаимодействуют друг с другом. Дело в том, что изолированные атомы одного химического элемента излучают волны строго определенной длины волны.

При увеличении плотности газа спектральные линии начинают расширяться. Для наблюдения такого спектра используют свечение газового разряда в трубке или паров вещества в пламени. Если пропускать белый свет через неизлучающий газ, на фоне непрерывного спектра источника появятся темные линии спектра поглощения. Газ интенсивнее всего поглощает свет тех длин волн, которые он испускает в нагретом состоянии.

Иараджули Георгий

Спектры излучения и поглощения.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Спектры. Виды спектров. Спектральный анализ. Презентация по физике ученика 11 класса ГБОУ СОШ № 1465 имени адмирала Н.Г. Кузнецова Иараджули Георгия Учитель физики Круглова Лариса Юрьевна

Понятие спектра и основные сведения Спектр – распределение значений физической величины (обычно энергии, частоты или массы).Графическое представление такого распределения называется спектральной диаграммой. Обычно под спектром подразумевается электромагнитный спектр - спектр частот электромагнитного излучения.

История исследования В научный обиход термин «спектр» ввёл Ньютон в 1671-1672 годах для обозначения многоцветной полосы, похожей на радугу, которая получается при прохождении солнечного луча через треугольную стеклянную призму.

Исторически раньше всех прочих спектров было начато исследование оптических спектров. Первым был Исаак Ньютон, который и ввёл в научный обиход термин "спектр" для обозначения полученной им в опытах над солнечным светом многоцветной полосы, похожей на радугу. В своём труде «Оптика» , вышедшем в 1704 году, опубликовал результаты своих опытов разложения с помощью треугольной стеклянной призмы белого света на отдельные компоненты различной цветности и преломляемости, то есть получил спектры солнечного излучения, и объяснил их природу, показав, что цвет есть собственное свойство света.

Фактически, Ньютон заложил основы оптической спектроскопии: в «Оптике» он описал все три используемых поныне метода разложения света: преломление, интерференцию и дифракцию, а его призма с коллиматором, щелью и линзой была первым спектроскопом. Фрагмент рукописи «Оптики» Ньютона с описанием одного из экспериментов с призмой.

Виды спектров Спектры излучения Спектры поглощения Спектры рассеивания

Спектры излучения Непрерывные Линейчатые Полосатые

Непрерывный спектр Дают тела, находящиеся в твердом, жидком состоянии, а также плотные газы. Чтобы получить, надо нагреть тело до высокой температуры. Характер спектра зависит не только от свойств отдельных излучающих атомов, но и от взаимодействия атомов друг с другом. В спектре представлены волны всех длин и нет разрывов. Непрерывный спектр цветов можно наблюдать на дифракционной решетке. Хорошей демонстрацией спектра является природное явление радуги. Одинаковы для разных веществ, поэтому их нельзя использовать для определения состава вещества

Линейчатый спектр Состоит из отдельных линий разного или одного цвета, имеющих разные расположения Позволяет по спектральным линиям судить о химическом составе источника света Дают все вещества в газообразном атомарном (но не молекулярном) состоянии (атомы практически не взаимодействуют друг с другом) Изолированные атомы данного химического элемента излучают волны строго определенной длины Для наблюдения используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом При увеличении плотности атомарного газа отдельные спектральные линии расширяются

Примеры линейчатых спектров

Полосатый спектр Дают вещества, находящиеся в молекулярном состоянии Спектр состоит из отдельных полос, разделенных темными промежутками. Каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий Для наблюдения используют свечение паров в пламени или свечение газового разряда

Примеры полосатых спектров Спектр угольной дуги (полосы молекул CN и C 2) Спектр испускания паров молекулы йода.

Спектр поглощения Это совокупность частот, поглощаемых данным веществом. Вещество поглощает те линии спектра, которые и испускает, являясь источником света Спектры поглощения получают, пропуская свет от источника, дающего сплошной спектр, через вещество, атомы которого находятся в невозбужденном состоянии Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появятся темные линии. Газ поглощает наиболее интенсивно свет тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра – это линии поглощения, образующие в совокупности спектр поглощения.

Примеры спектров поглощения Фраунгофер Йозеф (1787–1826)-немецкий физик. Усовершенствовал изготовление линз, дифракционных решеток. Подробно описал (1814) линии поглощения в спектре Солнца, названные его именем. Изобрел гелиометр-рефрактор. Фраунгофера справедливо считают отцом астрофизики за его работы в астроскопии. Линии Фраунгофера

Линии поглощения в спектре звёзд

Спектральный анализ Спектральный анализ – метод определения химического состава вещества по его спектру. В 1854 году Г.Р.Кирхгоф и Р.В.Бунзен начали изучать спектры пламени, окрашенного парами металлических солей, и в результате ими были заложены основы спектрального анализа, первого из инструментальных спектральных методов - одних из самых мощных методов экспериментальной науки.

Спектральный анализ окончательно был разработан в 1859 году. Фактически, спектральный анализ открыл новую эпоху в развитии науки - исследование спектров как наблюдаемых наборов значений функции состояния объекта или системы оказалось чрезвычайно плодотворным и, в конечном итоге, привело к появлению квантовой механики: Планк пришёл к идее кванта в процессе работы над теорией спектра абсолютно чёрного тела.

С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества если даже его масса не превышает 10 -10 кг. В настоящее время определены спектры всех атомов и составлены таблицы спектров. С помощью спектрального анализа были открыты многие новые элементы: рубидий, цезий и др. Именно с помощью спектрального анализа узнали химический состав Солнца и звезд. Благодаря сравнительной простоте и универсальности спектральный анализ является основным методом контроля состава вещества в металлургии, машиностроении, атомной индустрии. С помощью спектрального анализа определяют химический состав руд и минералов. Состав сложных, главным образом органических, смесей анализируется по их молекулярным спектрам. Спектральный анализ можно производить не только по спектрам испускания, но и по спектрам поглощения. Именно линии поглощения в спектре Солнца и звезд позволяют исследовать химический состав этих небесных тел.

Спектральные аппараты Для точного исследования спектров используют спектральные аппараты. Чаще всего основной частью спектрального аппарата является призма или дифракционная решетка. Для получения спектра излучения видимого диапазона используется прибор, называемый спектроскопом, в котором детектором излучения служит человеческий глаз. Спектроскоп Спектрограф

Спектроскоп Кирхгофа-Бунзена

>> Виды спектров

§ 82 ВИДЫ СПЕКТРОВ

Спектральный состав излучения веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три типа.

Непрерывные спектры. Солнечный или спектр дугового фонаря является непрерывным. Это означает, что в спектре представ.тены волны всех длин волн. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу (см. рис. V, 1 на цветной вклейке).

Распределение энергии по частотам, т. е. спектральная плотность интенсивности излучения, для разных тел различно. Например, тело с очень черной поверхностью излучает электромагнитные волны всех частот, но кривая зависимости спектральной плотности интенсивности излучения от частоты имеет максимум при определенной частоте Vmax (рис. 10.3). Энергия , приходящаяся на очень малые (V -> 0) и очень большие (v -> v) частоты, ничтожно мала. При повышении температуры тела максимум спектральной плотности излучения смещается в сторону коротких волн.

Непрерывные (или сплошные) спектры , как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть те.ло до высокой температуры.

Характер непрерывного спектра и сам факт его существования не только определяются свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновениях электронов с ионами.

Линейчатые спектры. Внесем в бледное пламя газовой горелки кусочек асбеста, смоченный раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп увидим, как на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия (см.рис. V, 2 на цветной вклейке).

Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На цветной вклейке приведены также спектры водорода и гелия. Каждый из спектров - это частокол цветных линий различной яркости, разделенных широкими темными полосами. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). На рисунке 10.4 показано примерное распределение спектральной плотности интенсивности излучения в линейчатом спектре. Каждая линия имеет конечную ширину.

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы , которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы излучают свет строго определенных длин волн.

Обычно для наблюдения линeйчaтыx спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и, наконец, при очень большом сжатии газа, когдаa взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры. Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляетет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спеутров полосатые спектры образуются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, используют свечение паров вещества в пламени или свечение газового разряда.

Спектры поглощения. Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны. Энергия этих волн определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны . Так, красное стекло пропускает волны, соответствующие красному свету ( 8 10 -5 см), и поглощает все остальные.

Если пропускать белый свет сквозь холодный, не излучающий газ, то на фоне непрерывного спектра источника появляются темные линии (см. рис. V, 5-8 на цветной вклейке). Газ поглощает наиболее интенсивно свет именно тех длин волн, которые он сам испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра - это линии поглощения, образующие в совокупности спектр поглощения.

Существуют непрерывные, линейчатые и полосатые спектры излучения и столько же видов спектров поглощения.


1. Является ли спектр лампы накаливания непрерывным!
2. В чем главное отличие линейчатых спектров от непрерывных и полосатых!

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения

Профессиональное училище №51

Реферат

Предмет: Физика.

Тема: Спектры, спектральный анализ и виды излучения.

Подготовил:

Учащейся группы № 21

Белоусов Павел Михайлович

Проверил:

Ляшкова Людмила Васильевна

г.Березники, 2009 г.

Введение…………………………………………………………………….……3

    Исторические сведения………………………………………………….……4

    Теория возникновения цветов

    Виды излучения………………………………….……………………………6

    Излучения атома

    Тепловое излучение

    Электролюминесценция

    Катодолюминесценция

    Хемилюминесценция

    Фотолюминесценция

    Типы спектров………………………………………….………..……………7

  1. Непрерывный спектр

    Линейчатый спектр

    Полосатый спектр

    Спектральный анализ и его применение………………………...….….……9

Заключение………………………………………………………………..….…10

Список используемой литературы……………………………………….....…11

Приложения………………………………………………………………..……12

Введение

Если сказать по-простому «спектр» это многоцветная полоса, получающаяся при прохождении светового луча через стеклянную призму или какую-либо другую преломляющую свет среду.

В природе мы можем наблюдать спектр, когда на небе появляется Радуга

Радуга - это оптическое явление, связанное с преломлением световых лучей на многочисленных капельках дождя.

Первый кто открыл спектр, был Исаак Ньютон. Он провел обычный опыт со стеклянной призмой и заметил разложение света на спектр.

Направив луч дневного света на призму, он увидел на экране различные цвета радуги. После увиденного он выделил из них семь основных цветов. Это были такие цвета как: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый (каждый охотник желает знать где сидит фазан). Ньютон выбрал лишь семь цветов по той причине, что были наиболее яркие, он также говорил, что в музыке всего семь нот, но сочетание их, различные вариации позволяют получить совершенно различные мелодии.

1 . Исторические сведения

1.1 Теория возникновения цветов

Великий английский ученый Исаак Ньютон выполнил целый комплекс оптических экспериментов с призмами, подробно описав их в «Оптике», «Новой теории света и цветов», а также в «Лекциях по оптике». Ньютон убедительно доказал ложность представлений о возникновении цветов из смешения темноты и белого света. На основании проделанных опытов он смог заявить: «Никакого цвета не возникает из белизны и черноты, смешанных вместе, кроме промежуточных темных; количество света не меняет вида цвета». Ньютон показал, что белый свет не является основным, его надо рассматривать как составной (по Ньютону, «неоднородный»; по современной терминологии, «немонохроматический»); основными же являются различные цвета («однородные» лучи или, иначе, «монохроматические» лучи). Возникновение цветов в опытах с призмами есть результат разложения составного (белого) света на основные составляющие (на различные цвета). Это разложение происходит по той причине, что каждому цвету соответствует своя степень преломляемости. Таковы основные выводы, сделанные Ньютоном; они прекрасно согласуются с современными научными представлениями. Выполненные Ньютоном оптические исследования представляют большой интерес не только с точки зрения полученных результатов, но также и с методической точки зрения. Разработанная Ньютоном методика исследований с призмами (в частности, метод скрещенных призм) пережила века и вошла в арсенал современной физики. Приступая к оптическим исследованиям, Ньютон ставил перед собой задачу «не объяснять свойства света гипотезами, но изложить и доказать их рассуждениями и опытами». Проверяя то или иное положение, ученый обычно придумывал и ставил несколько различных опытов. Он подчеркивал, что необходимо использовать разные способы «проверить то же самое, ибо испытующему обилие не мешает».

2. Виды излучения

2.1 Излучения атома

Электромагнитные волны излучаются при ускоренном движении заряженных частиц. Эти заряженные частицы входят в состав атомов. Но, не зная, как устроен атом, ничего достоверного о механизме излучения сказать нельзя. Ясно лишь, что внутри атома нет света так же, как в струне рояля нет звука. Подобно струне, начинающей звучать лишь после удара молоточка, атомы рождают свет только после их возбуждения.

Для того чтобы атом начал излучать, ему необходимо передать энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам.

2. 2 Тепловое излучение

Наиболее простой и распространенный вид излучения - тепловое излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов или (молекул) излучающего тела. Чем выше температура тела, тем быстрее движутся атомы. При столкновении быстрых атомов (молекул) друг с другом часть их кинетической энергии превращается в энергию возбуждения атомов, которые затем излучают свет.

Тепловым источником излучения является Солнце, а также обычная лампа накаливания. Лампа очень удобный, но малоэкономичный источник. Лишь примерно 12% всей энергии, выделяемой в лампе электрическим током, преобразуется в энергию света. Тепловым источником света является пламя. Крупинки сажи раскаляются за счет энергии, выделяющейся при сгорании топлива, и испускают свет.

2.3 Электролюминесценция

Энергия, необходимая атомам для излучения света, может заимствоваться и из нетепловых источников. При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Быстрые электроны испытывают соударения с атомами. Часть кинетической энергии электронов идет на возбуждение атомов. Возбужденные атомы отдают энергию в виде световых волн. Благодаря этому разряд в газе сопровождается свечением. Это и есть электролюминесценция.

2.4 Катодолюминесценция

Свечение твердых тел, вызванное бомбардировкой их электронами, называют катодолюминесценцией. Благодаря катодолюминесценции светятся экраны электронно-лучевых трубок телевизоров.

2.5 Хемилюминесценция

При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света. Источник света остается холодным (он имеет температуру окружающей среды). Это явление называется хемилюминесценцией.

2.6 Фотолюминесценция

Падающий на вещество свет частично отражается, а частично поглощается. Энергия поглощаемого света в большинстве случаев вызывает лишь нагревание тел. Однако некоторые тела сами начинают светиться непосредственно под действием падающего на него излучения. Это и есть фотолюминесценция. Свет возбуждает атомы вещества (увеличивает их внутреннюю энергию), после этого они высвечиваются сами. Например, светящиеся краски, которыми покрывают многие елочные игрушки, излучают свет после их облучения.

Явление фотолюминесценции широко используется в лампах дневного света. Советский физик С. И. Вавилов предложил покрывать внутреннюю поверхность разрядной трубки веществами, способными ярко светиться под действием коротковолнового излучения газового разряда. Лампы дневного света примерно в три-четыре раза экономичнее обычных ламп накаливания.

3. Типы спектров

3.1 Спектр

Спектр (лат. spectrum от лат. spectare - смотреть) – это цветная картинка состоящая из семи цветов расположенных в строгом порядке друг за другом.

По характеру распределения значений физической величины спектры могут быть полосатыми, дискретными (линейчатыми), непрерывными (сплошными), а также представлять комбинацию (наложение) дискретных и непрерывных спектров.

3.2 Непрерывный спектр

Сплошные спектры состоят из широкого диапазона длин волн. Эти спектры наблюдают в раскаленных твердых и жидких телах, а также в газах очень высокой плотности.

Солнечный спектр или спектр дугового фонаря является непрерывным (сплошным). Это означает, что в спектре представлены все длины волн. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу.

Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также плотные газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры. Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом. Непрерывный спектр дает также высокотемпературная плазма.

3.3 Линейчатый спектр

Линейчатые спектры состоят из отдельных спектральных линий, соответствующих отдельным значениям длин волн. Линейчатые спектры наблюдают в раскаленных газах малой плотности.

Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет ярко желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени.

На спектроскопе также можно увидеть частокол цветных линий различной яркости, разделенных широкими темными полосами. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). Каждая из линий имеет конечную ширину.

3.4 Полосатый спектр

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда

4. Спектральный анализ и его применение

Линейчатые спектры играют особо важную роль, потому что их структура прямо связана со строением атома. Ведь эти спектры создаются атомами, не испытывающими внешних воздействий. Поэтому, знакомясь с линейчатыми спектрами, мы тем самым делаем первый шаг к изучению строения атомов. Наблюдая эти спектры, ученые получили возможность "заглянуть" внутрь атома. Здесь оптика вплотную соприкасается с атомной физикой.

Главное свойство линейчатых спектров состоит в том, что длины волн (или частоты) линейчатого спектра какого-либо вещества зависят только от свойств атомов этого вещества, но совершенно не зависят от способа возбуждения свечения атомов. Атомы любого химического элемента дают спектр, не похожий на спектры всех других элементов: они способны излучать строго-определенный набор длин волн.

На этом основан спектральный анализ - метод определения химического состава вещества по его спектру. Подобно отпечаткам пальцев у людей линейчатые спектры имеют неповторимую индивидуальность. Неповторимость узоров на коже пальца помогает часто найти преступника. Точно так же благодаря индивидуальности спектров имеется возможность определить химический состав тела.

В астрофизике под спектральным анализом понимают не только определение химического состава звезд, газовых облаков и т. д., но и нахождение по спектрам многих других физических характеристик этих объектов: температуры, давления, скорости движения, магнитной индукции.

Кроме астрофизики спектральный анализ широко применяют в криминалистике, для расследования улик, найденных на месте преступления. Также спектральный анализ в криминалистике хорошо помогает определять орудие убийства и вообще раскрывать некоторые частности преступления.

Еще шире спектральный анализ используют в медицине. Здесь его применение весьма велико. Его можно использовать для диагностирования, а также для того, чтобы определять инородные вещества в организме человека.

Спектральный анализ прогрессирует не только науку, но и общественную сферу человеческой деятельности.

Заключение

И так Спектр это цветная полоса, получающаяся при прохождении светового луча через стеклянную призму или какую-либо другую преломляющую свет среду

Из видов излучения мы узнали, что тепловое излучение это самый распространённый и простой вид излучения. Тепловыми источниками являются: Солнце, лампа накаливания, или пламя огня.

Электролюминесценция - это явление наблюдается при разряде в газах, при котором возбужденные атомы отдают энергию в виде световых волн. Благодаря этому разряд в газе сопровождается свечением. Например северное сияние, надписи на магазинах.

Католюминесценция - Это свечение твердых тел, вызванное бомбардировкой их электронами. Благодаря католюминесценции светятся экраны электронно – лучевых трубок телевизоров.

Хемилюминесценция. При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света, причем источник света остается холодным. Например Кусок дерева, пронизанный светящейся грибницей, Рыба, обитающая на большой глубине.

Фотолюминесценция. Под действием падающего излучения, атомы вещества возбуждаются и после этого тела высвечиваются. Например, Лампа дневного света, елочные игрушки покрывают светящими красками.

По характеру распределения значений физической величины спектры могут быть полосатыми, дискретными (линейчатыми), непрерывными (сплошными), а также представлять комбинацию (наложение) дискретных и непрерывных спектров.

Так же мы узнали что, спектральный анализ основан на методе определения химического состава вещества по его спектру.

С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества. Благодаря универсальности спектральный анализ является основным методом контроля состава вещества в металлургии, машиностроении, атомной индустрии.

Список используемой литературы

    Учебное Издание, Справочник школьника 5-11 классы

    Свободная электронная энциклопедия «ВИКИПЕДИЯ»

    Физика. 11 класс Г. Я. Мякишев, Б. Б. Буховцев

Приложения

Рис. 2.2 Тепловое излучение

Лампа накаливания

Рис. 2.3 Электролюминесценция

Северное сияние

Рис. 2.4 Катодолюминесценция

Лучевая трубка телевизора

Рис. 2.5 Хемилюминесценция

Кусок дерева, пронизанный светящейся грибницей

Рыба, обитающая на большой глубине

Рис. 2.6 Фотолюминесценция

Лампа дневного света

Виды спектров

Рис. 3.2 Непрерывный спектр

Рис. 3.4 Полосатый спектр

Рис. 3.5 Линейчатый спектр

4 Спектральный анализ и его применение.


Лабораторная электролизная установка

для анализа металлов «ЭЛАМ».

Установка предназначена для проведения

весового электролитического анализа меди,

свинца, кобальта и др. металлов в сплавах

и чистых металлах.

Стационарно – искровые

оптико - эмиссонные спектрометры

«МЕТАЛСКАН –2500».

Предназначены для точного анализа

металлов и сплавов, включая цветные,

сплавы черных металлов и чугуны.

  1. Тема урока Содержание изучаемого материала

    Урок

    Работа по теме «Электромагнитные волны» Конденсатор, виды конденсаторов. ... технике» 15/ Типы оптических спектров . Спектральный анализ . Лабораторная работа «Наблюдение сплошного... элемента линии в спектрах излучения и поглощения совпадают Самостоятельная...

  2. Тема 1 Физика и астрономия наука о природе

    Урок

    Урок 6/48. Обобщающее повторение темы . Тема 6. Природа тел Солнечной системы. ... Урок 10/35. Сплошной линейный спектр . Спектральный анализ . Урок 11/36. Лабораторная... Урок 45/45. Различные виды электромагнитных излучений , их свойства и практическое...

  3. Рабочая программа дисциплины дисциплина сд. Ф. 10 Спектральные методы исследования в биохимии Укрупненная группа

    Рабочая программа

    ... спектра Спектральный анализ однокомпонентных сред в ультрафиолетовой области Методика расчета концентрации компонентов раствора по спектру Спектральный анализ ... излучения . Молярный коэффициент поглощения. Оптическая плотность. 15. Различные виды ...

Виды излучений

Тепловое излучение излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов (или молекул) излучающего тела. Тепловым источником является солнце, лампа накаливания и т. д.

Электролюминесценция (от латинского люминесценция - «свечение») – разряд в газе сопровождающийся свечением. Северное сияние есть проявление электролюминесценции. Используется в трубках для рекламных надписей.

Катодолюминесценция свечение твердых тел, вызванное бомбардировкой их электронами. Благодаря ей светятся экраны электронно-лучевых трубок телевизоров.

Хемилюминесценция излучение света в некоторых химических реакциях, идущих с выделением энергии. Ее можно наблюдать на примере светлячка и других живых организмах, обладающих свойством светиться.

Фотолюминесценция свечение тел непосредственно под действием падающих на них излучений. Примером являются светящиеся краски, которыми покрывают елочные игрушки, они излучают свет после их облучения. Это явление широко используется в лампах дневного света.

Для того чтобы атом начал излучать, ему необходимо передать определенную энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.

Спектры





Полосатые спектры

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.


Спектральный анализ

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др. В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральный анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения. Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта. Простейший спектральный аппарат - спектрограф.

Схема устройства призменного спектрографа


История

Тёмные линии на спектральных полосках были замечены давно (например, их отметил Волластон), но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света. Аналогичные линии он обнаружил у искусственных источников света, а также в спектрах Венеры и Сириуса.

Фраунгоферовы линии


Вскоре выяснялось, что одна из самых отчётливых линий всегда появляется в присутствии натрия. В 1859 году Г.Кирхгоф и Р.Бунзен после серии экспериментов заключили: каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. С этого момента в науке появился спектральный анализ, мощный метод дистанционного определения химического состава.

Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.

Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а 1861 году - рубидий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы соответственно).

Принцип работы

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10-30 мг), необходимого для анализа на большое число элементов. Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000-10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Спектр электромагнитных излучений

Свойства электромагнитных излучений. Электромагнитные излучения с различными длинами волн имеют довольно много различий, но все они, от радиоволн и до гамма-излучения, одной физической природы. Все виды электромагнитного излучения в большей или меньшей степени проявляют свойства интерференции, дифракции и поляризации, характерные для волн. Вместе с тем все виды электромагнитного излучения в большей или меньшей мере обнаруживают квантовые свойства.

Общим для всех электромагнитных излучений являются механизмы их возникновения: электромагнитные волны с любой длиной волны могут возникать при ускоренном движении электрических зарядов или при переходах молекул, атомов или атомных ядер из одного квантового состояния в другое. Гармонические колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

Радиоволны . При колебаниях, происходящих с частотами от 10 5 до 10 12 Гц, возникают электромагнитные излучения, длины волн которых лежат в интервале от нескольких километров до нескольких миллиметров. Этот участок шкалы электромагнитных излучений относится к диапазону радиоволн. Радиоволны применяются для радиосвязи, телевидения, радиолокации.

Инфракрасное излучение. Электромагнитные излучения с длиной волны, меньшей 1-2 мм, но большей 8*10 -7 м, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением.


Область спектра за красным его краем впервые экспериментально была исследована в 1800г. английским астрономом Вильямом Гершелем (1738 - 1822 гг.). Гершель поместил термометр с зачерненным шариком за красный край спектра и обнаружил повышение температуры. Шарик термометра нагревался излучением, невидимым глазом. Это излучение назвали инфракрасными лучами.

Инфракрасное излучение испускают любые нагретые тела. Источниками инфракрасного излучения служат печи, батареи водяного отопления, электрические лампы накаливания.

С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте. Инфракрасное излучение применяется для сушки окрашенных изделий, стен зданий, древесины.

Видимый свет. К видимому свету (или просто свету) относятся излучения с длиной волны примерно от 8*10 -7 до 4*10 -7 м, от красного до фиолетового света.

Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения. Свет является обязательным условием развития зеленых растений и, следовательно, необходимым условием для существования жизни на Земле.

Ультрафиолетовое излучение . В 1801 году немецкий физик Иоганн Риттер (1776 - 1810), исследуя спектр, открыл, что за

его фиолетовым краем имеется область, создаваемая невидимыми глазом лучами. Эти лучи воздействуют на некоторые химические соединения. Под действием этих невидимых лучей происходит разложения хлорида серебра, свечение кристаллов сульфида цинка и некоторых других кристаллов.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового света, называют ультрафиолетовым излучением. К ультрафиолетовому излучению относят электромагнитные излучения в диапазоне длин волн от 4*10 -7 до 1*10 -8 м.

Ультрафиолетовое излучение способно убивать болезнетворных бактерий, поэтому его широко применяют в медицине. Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека - загару.

В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами.

Рентгеновские лучи. Если в вакуумной трубке между нагретым катодом, испускающим электрон, и анодом приложить постоянное напряжение в несколько десятков тысяч вольт, то электроны будут сначала разгоняться электрическим полем, а затем резко тормозиться в веществе анода при взаимодействии с его атомами. При торможении быстрых электронов в веществе или при переходах электронов на внутренних оболочках атомов возникают электромагнитные волны с длиной волны меньше, чем у ультрафиолетового излучения. Это излучение было открыто в 1895 году немецким физиком Вильгельмом Рентгеном (1845-1923). Электромагнитные излучения в диапазоне длин волн от 10 -14 до 10 -7 м называются рентгеновскими лучами.


Рентгеновские лучи невидимы глазом. Они проходят без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку.

Способность рентгеновских лучей проникать через толстые слои вещества используется для диагностики заболеваний внутренних органов человека. В технике рентгеновские лучи применяются для контроля внутренней структуры различных изделий, сварных швов. Рентгеновское излучение обладает сильным биологическим действием и применяется для лечения некоторых заболеваний. Гамма-излучение. Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными атомными ядрами и возникающее при взаимодействии элементарных частиц.

Гамма-излучение - самое коротковолновое электромагнитное излучение (<10 -10 м). Его особенностью являются ярко выраженные корпускулярные свойства. Поэтому гамма-излучение обычно рассматривают как поток частиц - гамма-квантов. В области длин волн от 10 -10 до 10 -14 и диапазоны рентгеновского и гамма-излучений перекрываются, в этой области рентгеновские лучи и гамма-кванты по своей природе тождественны и отличаются лишь происхождением.