Скорость распространения обыкновенного и необыкновенного лучей. Большая энциклопедия нефти и газа

  • Дата: 21.09.2019

Большой интерес представляет рассмотрение особенностей прохождения света через некоторые кристаллы, называемые двояко - преломляющими. Узкий пучок света, проходя через плоскопараллельную пластину такого кристалла, например исландского шпата СаСО 3 , раздваивается и расходится в пространстве тем больше, чем длиннее его путь в кристалле (рис. 7.7). Если вращать кристалл вокруг падающего луча, то один из лучей остаётся неподвижным (обыкновенный луч), а другой поворачивается вокруг первого (необыкновенный луч), хотя угол падения при этом сохраняется; названия «обыкновенный» и «необыкновенный» приложимы к лучам, пока они распространяются в кристалле. На выходе лучи оказываются линейно-поляризованными во взаимно перпендикулярных плоскостях, что легко проверить каким-либо анализатором.

Если надлежащим образом сошлифовать часть кристалла, то можно найти в нем такое направление (прямая, соединяющая тупые углы кристалла), вдоль которого раздвоение нормально падающего луча отсутствует,- это так называемая оптическая ось кристалла. Пространственное раздвоение отсутствует и в направлении, перпендикулярном этой оси. Однако там существует иной эффект, о чем будет сказано ниже.

Через точку падения луча на кристалл всегда можно провести оптическую ось; плоскость, содержащая эту ось и падающий луч, называется главной плоскостью (главным сечением) для данного луча.

Опыт показывает, что раздвоение луча в кристалле всегда происходит в главной плоскости. Так как при вращении кристалла вокруг падающего луча главная плоскость поворачивается в пространстве, то одновременно поворачивается и необыкновенный луч. Рассмотрим некоторые наиболее простые случаи распространения света в кристалле.

а) Если луч а параллелен оптической оси (рис. 7.8), то положение главной плоскости не определено. В частности, плоскость чертежа является главной плоскостью, но такой же является, например, и перпендикулярная ей плоскость. Условия распространения лучей с любой поляризацией одинаковы, й они не раздваиваются.

б) Если луч б идет перпендикулярно оптической оси (см. рис. 7.8), то электрический вектор, лежащий в главной плоскости, параллелен оси. Электрический вектор, перпендикулярный оси, лежит при этом в плоскости, нормальной к главной, так что условия распространения для этих составляющих электрического поля световой волны неодинаковы: лучи не раздваиваются, но имеют различную скорость распространения.

в) Если луч в идет под произвольным углом к оптической оси, то условия распространения указанных выше составляющих также неодинаковы: лучи распространяются по различным направлениям и с различными скоростями (см. рис. 7Г8).

Однако легко видеть, что луч, имеющий электрический вектор, перпендикулярный оптической оси, во всех этих случаях находится в одинаковых условиях, так что законы его распространения не должны зависеть от направления распространения; это и есть обыкновенный луч, подчиняющийся обычным законам преломления .

Второй же, необыкновенный луч во всех трех случаях находится в разных условиях (оптические свойства кристалла неизотропны), а потому и условия его распространения могут усложняться .

Явление двойного преломления было изучено Гюйгенсом. Он пришел к выводу, что показатель преломления обыкновенного луча по всем направлениям одинаков (n 0 =const), а необыкновенного (n e ) различен. При этом в направлении оптической оси условия распространения обоих лучей одинаковы, й показатели преломления их совпадают. Наибольшее различие показателей преломления получается в направлении, нормальном к оптической оси. Если в этом направлении скорость необыкновенного луча больше, чем обыкновенного (ν e > ν 0), то кристалл условно называют отрицательным. В противном случае кристалл считается положительным (ν e < ν 0). Кристаллы турмалина и исландского шпата отрицательны, кварца положительны.

В промежуточных направлениях различие в скоростях лучей изменяется непрерывно. ’ Если вообразить световое возмущение, возникающее внутри кристалла, то, по Гюйгенсу, волновые фронты в сечении, параллельном оптической оси, имеют вид, показанный на рисунке 7.9, и обладают вращательной симметрией (вокруг оптической оси). Таким образом, в положительном кристалле волновой фронт обыкновенной волны (сфера) содержит внутри себя вписанный фронт необыкновенной волны (эллипсоид вращения). У отрицательного кристалла, наоборот, фронт необыкновенной волны - эллипсоид - описан вокруг сферы. В обоих случаях поверхности соприкасаются на оптической оси. Очевидно (так как показатель преломления n пропорционален ), что и электрическая проницаемость в кристалле по разным направлениям различна. Для одноосного кристалла существуют три взаимно перпендикулярных направления (х, у, r), для которых справедливы соотношения:

причем направление х является направлением, оптической оси.

Таким образом, векторы электрической напряженности и электрического смещения уже не совпадают друг с другом.

В системе координат (х , у, r ) справедливо уравнение:

представляющее эллипсоид вращения (эллипсоид Френеля). В более общем случае, когда эллипсоид оказывается трехосным, а в кристалле существуют два направления оптических осей. Мы не будем изучать такие двухосные кристаллы.

Решение уравнений Максвелла для случая кристалла показывает, что" направление нормали к волновому фронту не всегда совпадает с направлением распространения светового потока (луча). Пользуясь построением Гюйгенса (оно является, в сущности, следствием теории Максвелла), мы увидим, к каким осложнениям это приводит.

Волновые фронты, показанные на рисунке 7.9, получились при возбуждении электромагнитного возмущения в начале координат, лежащем внутри кристалла. Заменим этот несколько искусственный случай более реальным. Пусть на плоскую поверхность кристалла толщиной h падает нормально ограниченная плоская волна. Если кристалл отшлифован так, что его оптическая ось перпендикулярна поверхности, то волновые фронты обыкновенной и необыкновенной волн (рис. 7.10, а) распространяются вдоль оси с одной скоростью и одновременно достигают противоположной грани кристалла (мы считаем ее параллельной верхней грани). При этом никакого раздвоения лучей не происходит, и они покидают кристалл в одной и той же фазе.

Если шлифовка такова, что ось параллельна верхней грани (рис. 7.10, б), то скорости распространения обыкновенной и необыкновенной волн различны, но направления их совпадают. Из кристалла выходят лучи, распространяющиеся в одном направлении, но имеющие разность фаз:

где t 0 и t e - время прохождения обоими лучами толщи кристалл ла, Т - период волны.

Это выражение можно представить в несколько ином виде:

Глаз не различает разности фаз. Так как энергия суммы взаимно перпендикулярных колебаний не зависит от разности начальных фаз (см. «Механику», § 1.9), а колебания векторов и взаимно перпендикулярны, то никакой интерференционной картины на экране не получается. Но специальными методами фазовый сдвиг обнаружить удается (см. § 7.5).

Наконец, если оптическая ось наклонна к грани (рис. 7.10, в), то плоские волновые фронты (огибающие элементарных сферических и эллипсоидальных фронтов), параллельные грани пластины, придут к нижней грани со сдвигом фаз (во времени). При этом обыкновенные лучи распространяются без преломления. Необыкновенные же лучи - прямые, соединяющие точки А (точки пересечения геометрических главных осей эллипсов) с точками В (точки касания волновых фронтов с нижней гранью),- оказываются теперь не перпендикулярными фронту необыкновенной волны: возникает преломление необыкновенных лучей й необыкновенный пучок смещается в кристалле относительно обыкновенного. На нижней грани необыкновенные лучи еще раз преломляются и выходят из кристалла перпендикулярно нижней грани. Пространственное разделение обыкновенного и необыкновенного пучков, возникшее в кристалле, сохраняется и за его пределами. Кроме того, в плоскостях, параллельных грани, оба пучка во внешнем пространстве имеют и фазовый сдвиг во времени.

Явление двойного лучепреломления. Свойства обыкновенного и необыкновенного лучей.

Почти все прозрачные диэлектрики оптически анизотропны, то есть свойства света при прохождении через них зависят от направления. Физическая природа анизотропии связана с особенностями строения молекул диэлектрика или особенностями кристаллической решетки, в узлах которой находятся атомы или ионы.

Вследствие анизотропии кристаллов при прохождении через них света возникает явление, называемое двойным лучепреломлением

Двойное луче­преломление вызвано неодинако­вой скоростью распространения световых волн в различных на­правлениях. В точ­ке падения естественного света, образуется две световых волны. Одна рас­пространяется в кристалле во всех направлениях с одинаковой скоростью - это обыкновенный луч (фронт волны сферической). В другой -скорость по направлению оптичес­кой оси кристалла оди­накова со скоростью в первой волне, а по направ­лению, перпендикулярному оптической оси, - боль­ше. Это необыкновенный луч (фронт волны имеет эллипсои­дальную форму).

Мы остановимся на так называемых одноосных кристаллах. У одноосных кристаллов один из преломленных пучков подчиняется обычному закону преломления. Его называют обыкновенным. Другой пучок называется необыкновенным, он не подчиняется обычному закону преломления. Даже при нормальном падении светового пучка на поверхность кристалла необыкновенный луч может отклоняться от нормали. Как правило, необыкновенный луч не лежит в плоскости падения. Если через такой кристалл посмотреть на окружающие предметы, то каждый предмет будет раздваиваться. При вращении кристалла вокруг направления падающего луча обыкновенный луч остается неподвижным, а необыкновенный будет двигаться вокруг него по окружности.

К одноосным кристаллам относятся, например, кристаллы кальцита или исландского шпата (). В одноосных кристаллах существует выделенное направление, вдоль которого обыкновенная и необыкновенная волна распространяются не разделяясь пространственно и с одинаковой скоростью. Направление, в котором не наблюдается двойного лучепреломления, называетсяоптической осью кристалла . Следует иметь в виду, что оптическая ось – это не прямая линия, проходящая через какую-то точку кристалла, а определенное направление в кристалле. Любая прямая, параллельная данному направлению, является оптической осью.

Исследование обыкновенного и необыкновенного лучей показывает, что оба луча полностью плоскополяризованы во взаимно перпендикулярных направлениях. Колебания вектора напряженности электрического поля в обыкновенной волне совершаются в направлении, перпендикулярном главному сечению кристалла для обыкновенного луча. В необыкновенной волне колебания вектора напряженности совершаются в плоскости, совпадающей с главным сечением для необыкновенного луча.

На рис. 5.15 показаны направления колебаний вектора напряженности в обоих лучах.

Из рисунка видно, что в данном случае плоскости колебаний обыкновенного и необыкновенного лучей взаимно перпендикулярны. Отметим, что это наблюдается практически при любой ориентации оптической оси, поскольку угол между обыкновенным и необыкновенным лучами очень мал.

На выходе из кристалла оба луча отличаются друг от друга только направлением поляризации, так что названия «обыкновенный» и «необыкновенный» имеют смысл только внутри кристалла.

Как известно, показатель преломления . Следовательно, из анизотропности e вытекает, что электромагнитным волнам с различными направлениями колебаний вектора соответствуют разные значения показателя преломления . Поэтому скорость световых волн зависит от направления колебаний светового вектора . В обыкновенном луче колебания светового вектора происходят в направлении, перпендикулярному к главному сечению кристалла, поэтому при любом направлении обыкновенного луча образует с оптической осью кристалла прямой угол и скорость световой волны будет одна и та же, равная .

Одноосные кристаллы характеризуются показателем преломления обыкновенного луча, равным , и показателем преломления необыкновенного луча, перпендикулярного к оптической оси, равным . Последнюю величину называют просто показателем преломления необыкновенного луча. Для исландского шпата , . Заметим, что значения и зависят от длины волны.

Показатель преломления, а, следовательно, и скорость распространения для обыкновенного луча n o не зависит от направления в кристалле. Обыкновенный луч распространяется в кристалле по обычным законам геометрической оптики.

Для необыкновенного луча показатель преломления изменяется от n o в направлении оптической оси до n e в перпендикулярном к ней направлении. Если n e > n o , то кристаллы называют положительными, при обратном соотношении n e < n o – отрицательными.

С точки зрения принципа Гюйгенса при двойном лучепреломлении в каждой точке поверхности волны, достигающей грани кристалла, возникает не одна, как в обычных средах, вторичная волна, а одновременно две волны, которые и распространяются в кристалле. Скорость распространения обыкновенной волны по всем направлениям одинакова. Скорость распространения необыкновенной волны в направлении оптической оси совпадает со скоростью обыкновенной волны, а по другим направлениям отличается.

Cтраница 1


Явление двойного лучепреломления в кальците открыл Бартолин в 1669 г. Гюйгенс в 1690 г. дал формальную теорию явления, выдвинув предположение, что оба луча имеют разную скорость; однако причину этого он объяснить не мог. В 1808 г. Малюс возродил представления Ньютона, объяснив особенности лучей, возникающих при двойном лучепреломлении, их полярными свойствами - аналогично полюсам магнита.  

Явление двойного лучепреломления также может быть использовано для получения плоскополяризованного света.  

Явление двойного лучепреломления заключается в том, что упавшая на кристалл волна внутри кристалла разделяется на две волны, распространяющиеся в общем случае в различных направлениях, с различными скоростями и имеющие различную поляризацию. Это явление наблюдается лишь в анизотропных средах и возникает вследствие зависимости скорости света от направления светового вектора волны. У двоякопреломляю-щих веществ имеются одно или два направления, вдоль которых свет с любым направлением светового вектора распространяется с одной и той же скоростью. Эти направления называются оптическими осями. Для кристаллов с одной оптической осью (одноосных кристаллов) плоскость, проходящая через оптическую ось и световой луч, называется главной плоскостью. Скорость одной из волн в таких кристаллах не зависит от направления ее распространения. Эта волна называется обыкновенной, плоскость ее колебаний перпендикулярна главной плоскости. У другой волны, которая называется необыкновенной, световой вектор лежит в главной плоскости, а ее скорость зависит от направления распространения.  

Явление двойного лучепреломления связано с молекулярной анизотропией, которая может быть следствием начальной анизотропной структуры, как это наблюдается в кристаллах, или же результатом деформации.  

Явление двойного лучепреломления в потоке заключается в том, что некоторые жидкости (например, оргавнческие вязкие жидкости с удлиненной формой молекул) при течении обнаруживают оптическую анизотропию. Особенно сильно двойное лучепреломление проявляется при течении золей с палочкообразными час.  

Явление двойного лучепреломления в потоке заключается в том, что некоторые жидкости (например, оргавнческие вязкие жидкости с удлиненной формой молекул) при течении обнаруживают оптическую анизотропию.  

Явление двойного лучепреломления в потоке заключается в том, что [ [ екоторые жидкости (например, органические вязкие жидкости с удлиненной формой молекул) при течении обнаруживают оптическую анизотропию. Особенно сильно двойное лучепреломление [ проявляется при течении золей с палочкообразными час.  

Явление двойного лучепреломления в изделиях из полистирола Винтергерст и Хеккель рассматривают как следствие молекулярной ориентации, происходящей в процессе литья под давлением.  

Явление двойного лучепреломления в потоке заключается в том, что некоторые жидкости (например, органические вязкие жидкости с удлиненной формой молекул) при течении обнаруживают оптическую анизотропию, выражающуюся в появлении двойного лучепреломления. Особенно сильно двойное лучепреломление проявляется при течении золей с палочкообразными частицами и растворов высокомолекулярных соединений.  

Явление двойного лучепреломления легко продемонстриро вать с помощью листка целлофана. Целлофан состоит из длинных молекул - волокон, и его структура неизотропна, поскольку волокна по большей части вытянуты в одном направлении. Для наблюдения явления двойного лучепреломления необходим пучок линейно поляризованного света, который нетрудно получить, пропуская неполяризованный свет через пластинку поляроида.  

Явление двойного лучепреломления впервые было обнаружено в кристаллах. Оно обусловлено анизотропией структуры и, в частности, зависимостью диэлектрической проницаемости е или показателя преломления п (п е) от направления в кристалле, и заключается в том, что при прохождении через кристалл световой луч раздваивается. Направление одного из лучей (обыкновенный луч) при выходе из кристалла удовлетворяет обычному закону преломления и лежит в одной плоскости с падающим лучом и нормалью; второй луч (называемый необыкновенным) проходит в кристалле под другим углом. В результате из кристалла выходят два луча, имеющих направления, параллельные первоначальному. Например, при рассматривании точки через кристалл исландского шпата, на котором впервые было обнаружено явление двойного лучепреломления (1670 г.), наблюдается ее раздваивание. Кроме того, обыкновенный и необыкновенный лучи поляризуются во взаимно перпендикулярных плоскостях.  

Явление двойного лучепреломления можно наблюдать под микроскопом, поместив материал, содержащий сферолиты, между скрещенными поляроидами. Присутствие сферолитов непосредственно свидетельствует о кристалличности данного материала. Заметим, что двойное лучепреломление само по себе без сферолитной структуры не является достаточным доказательством присутствия кристаллов, поскольку двойное лучепреломление наблюдается и в ориентированных аморфных областях.  

Явление двойного лучепреломления в потоке, обнаруженное впервые Максвеллом в 1870 г. , заключается в том, что в ламинарном потоке под действием сдвигового напряжения жидкость или раствор становятся оптически анизотропными.  

Явление двойного лучепреломления является оптическим свойством кристаллических тел. При пропускании света через прозрачную кристаллическую пластинку световая волна разлагается на две плоско-поляризованные волны, имеющие взаимно перпендикулярные плоскости колебаний и распространяющиеся внутри кристалла с различными скоростями.  

Явление двойного лучепреломления обладает целым рядом особенностей. Мы отметим только, что при этом явлении поляризуются оба преломленных луча.  

Двойное лучепреломление - это явление расщепления пучка света в анизотропной среде на два слагающих, распространяющихся с разными скоростями и поляризованных в двух взаимно перпендикулярных плоскостях. Двойное лучепреломление впервые обнаружено и описано профессором Копенгагенского университета Э. Бартолином в 1669 г. в кристалле исландского шпата. Если световой пучок падает перпендикулярно к поверхности кристалла, то он распадается на два пучка, один из которых продолжает путь без преломления, как и в изотропной среде, другой же отклоняется в сторону, нарушая обычный закон преломления света (рисунок 1.6). Соответственно этому лучи первого пучка называются обыкновенными, второго - необыкновенными. Угол, образуемый обыкновенным и необыкновенным лучами, называется углом двойного лучепреломления. Если в случае перпендикулярного падения пучка поворачивать кристалл вокруг пучка, то след обыкновенного луча остаётся на месте, в центре, а след необыкновенного луча вращается по кругу. Двойное лучепреломление можно наблюдать и при наклонном падении пучка света на поверхность кристалла. В исландском шпате и некоторых др. кристаллах существует только одно направление, вдоль которого не происходит двойное лучепреломление. Оно называется оптической осью кристалла, а такие кристаллы - одноосными.

Рисунок 1.6 - Двойное лучепреломление в одноосном кристалле

при перпендикулярном падении пучка света на переднюю грань кристалла

Направление колебаний электрического вектора у необыкновенного луча лежит в плоскости главного сечения (проходящей через оптическую ось и световой луч), которая является плоскостью поляризации. Нарушение законов преломления в необыкновенном луче связано с тем, что скорость распространения необыкновенной волны, а, следовательно, и её показатель преломления nе зависят от направления. Для обыкновенной волны, поляризованной в плоскости, перпендикулярной главному сечению, показатель преломления nо одинаков для всех направлений. Если из точки О (рисунок 1.6) откладывать векторы, длины которых равны значениям nе и nо в различных направлениях, то геометрические места концов этих векторов образуют сферу для обыкновенной волны и эллипсоид для необыкновенной (поверхности показателей преломления).

В прозрачных кристаллах интенсивности обыкновенного и необыкновенного лучей практически одинаковы, если падающий свет был естественным. Выделив диафрагмой один из лучей, получившихся при двойном лучепреломлении, и пропустив его через второй кристалл, можно снова получить двойное лучепреломление. Однако интенсивности обыкновенного и необыкновенного лучей в этом случае будут различны, т. к. падающий луч поляризован. Отношение интенсивностей зависит от взаимной ориентации кристаллов - от угла a, образуемого плоскостями главных сечений того и другого кристалла (плоскости, проходящие через оптическую ось и световой луч). Если j=0° или 180°, то остаётся только обыкновенный луч. При a=90°, наоборот, остаётся только луч необыкновенный. При a=45° интенсивность обоих лучей одинакова. В общем случае кристалл может иметь две оптических оси, т. е. два направления, вдоль которых двойное лучепреломление отсутствует. В двуосных кристаллах оба луча, появляющиеся при двойном лучепреломлении, ведут себя, как необыкновенные.

Двойное лучепреломление, характеризуемое величиной и знаком Dn, может быть положительным и отрицательным; в соответствии с этим различают положительные и отрицательные (одноосные) кристаллы (таблица 1.1).

Таблица 1.1 - Значения показателей преломления для различных кристаллов

Измерение Dn в тех случаях, когда двойное лучепреломление велико, может быть осуществлено непосредственным определением показателей преломления при помощи призм или специальных кристаллорефрактометров, позволяющих делать измерения n в разных направлениях. Во многих случаях (особенно для тонких слоев анизотропных тел), когда пространственное разделение двух лучей столь мало, что измерить nо и nе невозможно, измерения делаются на основании наблюдения характера поляризации света при прохождении его через слой анизотропного вещества.

Явление двойного лучепреломления.

Естественный свет, падая на оптически анизотропную среду, делится на две полностью линейно поляризованные волны с взаимно перпендикулярными плоскостями колебаний (рис.4)

При этом одна из них, называемая обыкновенной волной О , распространяется в кристалле во всех направлениях с одинаковой скоростью и, следовательно, характеризуется постоянным значением показателя преломления n 0 . Вторая световая волна, называемая необыкновенной е , распространяется с различными скоростями в зависимости от угла, образуемого лучом и кристаллографическими осями кристалла. В связи с этим она характеризуется различными показателями преломления.


Значение показателя преломления необыкновенной волны, максимально отличающееся от n 0 , обозначается n е .

Колебания электрического вектора в необыкновенной волне совершаются в плоскости "главного сечения кристалла", то есть в плоскости, проходящей через направление распространения света и направление оптической оси, а колебания вектора в обыкновенной волне к ним перпендикулярны.

Оптическая ось кристалла – это такое направление, для которого скорости распространения обыкновенной и необыкновенной волн одинаковы. Поэтому луч, распространяющийся вдоль оптической оси, не претерпевает раздвоения и не меняет характера поляризации. В том случае, если световая волна падает на кристалл перпендикулярно к его оптической оси, то обыкновенная и необыкновенная волны распространяются по одному и тому же направлению, но с различными скоростями.

Причиной двойного лучепреломления является анизотропия поляризуемости молекул, которая ведет к тому, что диэлектрическая проницаемость, а значит, и показатель преломления среды будут различны для разных направлений электрического вектора световой волны.

Явление двойного лучепреломления используется, в частности, для получения линейно поляризованного света с помощью различных поляризационных призм (призмы Николя, Глана-Томсона и др.). Это довольно дорогие и труднодоступные приборы. Во многих случаях для получения линейно поляризованного света широко используются более доступные приборы-поляроиды.

В поляроидах используется явление оптического дихроизма , то есть явление различного поглощения обыкновенного и необыкновенного лучей. Причина дихроизма – анизотропное строение вещества. Если полимерную пленку, состоящую из весьма длинных линейных, вытянутых молекул, подвергнуть специальной химической обработке, а затем в нагретом состоянии растянуть в определенном направлении, то после охлаждения полимерные молекулы ориентируются своими длинными осями вдоль направления растяжения. Образуются "эффективные провода", расстояние между которыми меньше длины волны видимого света. Такая пленка становится анизотропной. Она поглотает составляющую электрического вектора в падающей волне, направленную вдоль "проводов", а составляющую электрического поля, поперечную проводам, пропускают с очень малым ослаблением. Это объяс­няется следующим образом. Составляющая электрического вектора в падаю­щем излучении, параллельная «проводам», вызывает перемещение электронов вдоль "проводов", которые во-первых, передают при столкновениях часть своей энергии кристаллической решетке "проводника" и, во-вторых, излучают энергию. Излучение электронов ослабляет падающее излучение. Под действием составляющей электрического вектора, перпендикулярной "проводам", электроны не мот свободно перемещаться, так как их движение ограничено малым поперечником "проволоки". Они не испускают и не поглощают энергию. Следовательно, от прохождения через "проволочную ограду" эта составляющая падающего излучения не меняется. В поляроиде существует ось, в направлении которой поглощение излучения практически отсутствует. Эта ось называется осью свободного пропускания .