Освоение наземно воздушной среды разными группами организмов. Каталог файлов по биологии

  • Дата: 17.10.2019

Среда обитания - это непосредственная среда, в которой существует живой организм (животное или растение). Она может содержать как живые организмы, так предметы неживой природы и какое угодно количество разновидностей организмов от нескольких видов до нескольких тысяч, сосуществующих в определенном жизненном пространстве. Воздушно-наземная среда обитания включает в себя такие участки земной поверхности, как горы, саванны, леса, тундру, полярные льды и другие.

Среда обитания - планета Земля

Разные участки планеты Земля являются домом для огромного биологического разнообразия видов живых организмов. Существуют определенные типы среды обитания животных. Горячие, засушливые области часто покрыты жаркими пустынями. В теплых, влажных регионах располагаются влажные

Существует 10 основных типов земельных участков обитания на Земле. Каждый из них имеет множество разновидностей, в зависимости от того, где в мире он находится. Животные и растения, являющиеся типичными для определенной среды обитания, приспосабливаются к условиям, в которых они живут.

Африканские саванны

Эта тропическая травянистая воздушно-наземная среда обитания сообщества встречается в Африке. Для нее характерны длительные засушливые периоды, следующие за влажными сезонами с обильными осадками. Африканские саванны являются домом для огромного количества травоядных животных, а также сильных хищников, которые ими питаются.

Горы

На вершинах высоких горных хребтов очень холодно, и лишь немногие растения там произрастают. Животные, обитающие в этих высоких местах, приспособлены справляться с низкими температурами, недостатком пищи и крутой каменистой местностью.

Вечнозеленые леса

Хвойные леса часто встречаются в прохладных областях земного шара: Канада, Аляска, Скандинавия и регионы России. В них преобладают вечнозеленые ели, и эти области являются домом для таких животных, как лось, бобер и волк.

Лиственные деревья

В холодных влажных районах многие деревья быстро растут в летнее время, но теряют листья зимой. Количество диких животных в этих районах меняется в зависимости от сезона, так как многие мигрируют в другие районы или впадают в спячку зимой.

Умеренная зона

Для нее характерны сухие травянистые прерии и степи, лугопастбищные угодья, жаркое лето и холодная зима. Эта наземно-воздушная среда обитания организмов является домом для таких стадных травоядных животных, как антилопы и бизоны.

Средиземная зона

Земли вокруг Средиземного моря отличаются жарким климатом, но осадков здесь выпадает больше, чем в пустынных районах. Эти области являются домом для кустарников и растений, которые могут выжить только в случае доступа к воде и часто заполнены множеством различных видов насекомых.

Тундра

Такая воздушно наземная среда обитания, как тундра, большую часть года покрыта льдами. Природа оживает только весной и летом. Здесь обитают олени и гнездуются птицы.

Тропические леса

Эти густые зеленые леса растут вблизи экватора и располагают богатейшим биологическим разнообразием видов живых организмов. Ни одна другая среда обитания не может похвастаться таким количеством жителей, как территория, покрытая тропическими лесами.

Полярные льды

Холодные регионы вблизи Северного и Южного полюсов покрыты льдом и снегом. Здесь можно встретить пингвинов, тюленей и полярных медведей, которые добывают себе пропитание в ледяных водах океана.

Животные наземно-воздушной среды обитания

Места обитания разбросаны по огромной территории планеты Земля. Каждая характеризуется определенным биологическим и растительного мира, представители которого неравномерно заселяют нашу планету. В более холодных частях мира таких, как полярные регионы, имеется не так много видов фауны, населяющих эти территории и специально адаптированных к проживанию в условиях низких температур. Некоторые животные распространены по всему миру в зависимости от растений, которые они употребляют в пищу, например, гигантская панда населяет те районы,

Воздушно-наземная среда обитания

Каждому живому организму нужен дом, приют или среда, которая может обеспечить безопасность, идеальную температуру, пропитание и размножение - все то, что необходимо для выживания. Одна из важных функций среды обитания является обеспечение идеальной температуры, так как экстремальные изменения могут уничтожить целую экосистему. Важным условием также является наличие воды, воздуха, почвы и солнечного света.

Температура на Земле не везде одинаковая, в некоторых уголках планеты (Северный и Южный полюса) столбик термометра может опускаться до - 88°С. В других местах, особенно в тропиках, очень тепло и даже жарко (до +50°C). Температурный режим играет важную роль в процессах приспособления наземно-воздушной среды обитания, например, животные, адаптированных к низким температурам, не могут выжить в тепле.

Среда обитания является естественной средой, в которой живет организм. Животные требуют различного количества пространства. Место обитания может быть большим и занимать целый лес или маленьким, как норка. Некоторым обитателям приходиться защищать и отстаивать огромную территорию, в то время как другие нуждаются в небольшом участке пространства, где они могут относительно мирно сосуществовать с соседями, проживающими рядом.

Жизнь на суше во многом зависит от состояния воздуха. Естественная смесь газов, сложившаяся в процессе эволюции Земли, — это и есть воздух, которым мы дышим.

Воздух как среда жизни направляет эволюционное развитие обитателей этой среды. Так, высокое содержание кислорода определяет возможность формирования высокого уровня энергетического метаболизма (обмена веществ между организмом и средой). Атмосферный воздух отличается низкой и изменчивой влажностью, что ограничило возможности освоения воздушной среды, а у ее обитателей обусловило эволюцию системы водно-солевого обмена и структуру органов дыхания. Следует также отметить низкую плотность воздуха в атмосфере, благодаря чему жизнь сосредоточена вблизи поверхности Земли и проникает в толщу атмосферы на высоту не более 50-70 м (кроны деревьев тропических лесов).

Основными компонентами атмосферного воздуха являются азот (N 2) — 78,08 %, кислород (0 2) — 20,9 %, аргон (Аr) — около 1 % и углекислый газ (С0 2) — 0,03 % (табл. 1).

Кислород появился на Земле примерно 2 млрд лет назад, когда происходило формообразование поверхности под воздействием активной вулканической деятельности. В течение последних 20 млн лет доля кислорода в воздухе постепенно возрастала (сегодня она составляет 21 %). Главную роль в этом играло развитие растительного мира суши и океана.

Таблица 1. Газовый состав атмосферы Земли

Атмосфера предохраняет Землю от метеоритной бомбардировки. Около 5 раз в год в атмосфере сгорают обломки метеоритов, комет и астероидов, мощность которых при встрече с Землей превысила бы мощность бомбы, сброшенной на Хиросиму. Большинство метеоритов никогда не достигает земной поверхности, они сгорают еще при вхождении с огромной скоростью в атмосферу. Ежегодно на Землю выпадает около 6 млн т космической пыли.

Кроме того, атмосфера способствует сохранению тепла на планете, которое в противном случае рассеивалось бы в холоде космического пространства. Сама же атмосфера благодаря силе притяжения не улетучивается.

На высоте 20-25 км от поверхности Земли находится защитный (слой), задерживающий губительную для всего живого ультрафиолетовую радиацию. Не будь его, такое излучение могло бы уничтожить жизнь на Земле. К сожалению, начиная с 80-90-х гг. XX в. наблюдается негативная тенденция к истончению и разрушению озонового экрана.

Под "средой" подразумевается все то, что окружает организм и так или иначе на него влияет. Иными словами, среда жизни характеризуется определенным набором экологических факторов. Среда - среда жизни - водная среда - наземно-воздушная среда - почвенная среда - организм как среда жизни - ключевые понятия.

Общепризнанным определением среды является определение Николая Павловича Наумова: "Среда - все, что окружает организмы, прямо или косвенно влияет на их состояние, развитие, выживание и размножение". На Земле различают четыре качественно различные среды жизни, обладающие набором специфических экологических факторов: -наземно-водушная (суша); - водная; - почва; - другие организмы.

Наземно-воздушная среда характеризуется огромным разнообразием условий существования, экологических ниш и заселяющих их организмов. Организмы играют первостепенную роль в формировании условий наземно-воздушной среды жизни, и прежде всего - газового состава атмосферы. Практически весь кислород земной атмосферы имеет биогенное происхождение. Основными особенностями наземно-воздушной среды является

Большие изменения экологических факторов,

Неоднородность среды,

Действие сил земного тяготения,

Низкая плотность воздуха.

Комплекс физико-географических и климатических факторов, относящихся к определенной природной зоне, приводит к адаптации организмов к жизни в этих условиях, многообразию форм жизни. Высокое содержание кислорода в атмосфере (около 21%) определяет возможность формирования высокого (энергетического) уровня обмена веществ. Атмосферный воздух отличается низкой и изменчивой влажностью. Это обстоятельство во многом ограничивало возможности освоения наземно-воздушной среды.

Атмосфера (от греческого atmos - пар и sphaira - шар), газообразная оболочка земли. Точной верхней границы земной атмосферы указать нельзя. Атмосфера имеет выраженное слоистое строение. Основные слои атмосферы:

1)Тропосфера - высота 8 - 17 км. в ней сосредоточен весь водяной пар и 4/5 массы атмосферы и развиваются все явления погоды.

2)Стратосфера - слой над тропосферой до 40 км. Характеризуется почти полной неизменностью температуры по высоте. В верхней части стратосферы наблюдается максимальная концентрация озона, поглощающего большое число ультрафиолетовой радиации Солнца.

3) Мезосфера - слой между 40 и 80 км; в нижней его половине температура растет от +20 до +30 градусов, в верхней - падает почти до -100 градусов.

4) Термосфера (ионосфера) - слой между 80 - 1000км, обладающий повышенной ионизацией молекул газа (под воздействием беспрепятственно проникающей космической радиации).

5) Экзосфера (сфера рассеяния) - слой выше 800 - 1000км, из которого молекулы газов рассеиваются в космическое пространство. Атмосфера пропускает 3/4 солнечного излучения, увеличивая тем самым общее количество тепла, идущего на развитие природных процессов Земле.

Водная среда жизни . Гидросфера (от гидро... и сфера), прерывистая водная оболочка Земли, располагающаяся между атмосферой и твердой земной корой (литосферой). Представляет совокупность океанов, морей, озер, рек, болот, а также подземных вод. Гидросфера покрывает около 71% земной поверхности. Химический состав гидросферы приближается к среднему составу морской воды.

Количество пресной воды составляет 2,5 % всей воды на планете; 85 % - морская вода. Запасы пресной воды распределены крайне неравномерно: 72,2 % - льды; 22,4 % - грунтовые воды; 0,35 % - атмосфера; 5, 05 % - устойчивый сток рек и вода озер. На долю воды, которую мы можем использовать, приходиться всего 10-12% всей пресной воды на Земле.

Первичной средой жизни была именно водная среда. Прежде всего, большинство организмов не способны к активной жизнедеятельности без поступления воды в организм или, без сохранения определенного содержания жидкости внутри организма. Главной особенностью водной среды, является: суточные и сезонные колебания температуры. Огромное экологическое значение , имеют высокая плотность и вязкость воды. Удельная масса воды соизмерима с таковой тела живых организмов. Плотность воды примерно в 1000 раз выше плотности воздуха. Поэтому водные организмы (особенно, активно движущиеся), сталкиваются с большей силой гидродинамического сопротивления. Высокая плотность воды является причиной того, что механические колебания (вибрации) хорошо распространяются в водной среде. Это очень важно для органов чувств, ориентации в пространстве и между водными обитателями. Скорость звука в водной среде имеет более высокую частоту эхолокационных сигналов. Большая, чем в воздухе, в четыре раза. Поэтому есть целая группа водных организмов (как растений, так и животных), существующих без обязательной связи с дном или другим субстратом, "парящих" в водной толще.

Наземно-воздушная среда характеризуется особенностями экологических условий, сформировавших специфические приспособления у сухопутных растений и животных, что выразилось в разнообразии морфологических, анатомических, физиологических, биохимических и поведенческих адаптаций.

Низкая плотность атмосферного воздуха затрудняет поддержание формы тела, потому у растений и животных образовалась опорная система. У растений это механические ткани (лубяные и древесинные волокна), которые обеспечивают сопротивление статическим и динамическим нагрузкам: ветру, дождю, снежному покрову. Напряженное состояние клеточной стенки (тургор), вызванное накоплением в вакуолях клеток жидкости с высоким осмотическим давлением обусловливает упругость листьев, стеблей трав, цветков. У животных опору телу создает гидроскелет (у круглых червей), наружный скелет (у насекомых), внутренний (у млекопитающих).

Низкая плотность среды облегчает передвижение животных. Многие наземные виды способны к полету (активному или планирующему) - птицы и насекомые, есть и представители млекопитающих, амфибий и рептилий. Полет связан с передвижением и поиском добычи Активный полет возможен за счет модифицированных передних конечностей, развитых грудных мышц. У планирующих животных образовались между передними и задними конечностями сформировались кожные складки, которые растягиваются и играют роль парашюта.

Высокая подвижность воздушных масс сформировала у растений древнейший способ опыления растений ветром (анемофилия) характерную для многих растений средний полосы и расселения с помощью ветра. Эта экологическая группа организмов (аэропланктон) адаптировалась благодаря большой относительной площади поверхности за счет парашютиков, крыльев, выростов и даже паутины, либо за счет очень мелких размеров.

Низкое атмосферное давление, которое в норме составляет 760 мм ртутного столба (или 101 325 Па), малые перепады давления, сформировали почти у всех обитателей суши чувствительность к сильным перепадам давления. Верхняя граница жизни для большинства позвоночных животных - около 6 000 м. Снижение атмосферного давления с повышением высоты над уровнем моря уменьшает растворимость кислорода в крови. Это увеличивает частоту дыхания, а в результате частое дыхание приводит к обезвоживанию организма. Эта простая зависимость не характерна только для редких видов птиц и некоторых беспозвоночных.

Газовый состав наземно-воздушной среды отличается высоким содержанием кислорода (более чем в 20 раз выше, чем в водной среде). Это позволяет животным иметь очень высокий уровень обмена веществ. Поэтому только на суше могла возникнуть гомойтермность (способность поддерживать постоянную температуру тела, в основном, за счет внутренней энергии).



Значение температуры в жизни организмов определяется влиянием на скорость биохимических реакций. Повышение температуры (до 60 ° С) окружающей среды вызывает у организмов денатурацию белков. Сильное понижение температуры приводит к понижению скорости обмена веществ и как критическое состояние – замерзание воды в клетках (кристаллы льда в клетках нарушают целостность внутриклеточных структур). В основном на суше живые организмы могут существовать только в пределах 0 ° - +50 ° , т.к. эти температуры совместимы с протеканием основных процессов жизнедеятельности. Однако каждый вид имеет свое верхнее и нижнее летальное значение температуры, значение температурного угнетения и температурного оптимума.

Организмы, жизнедеятельность и активность которых зависят от внешнего тепла (микроорганизмы, грибы, растения, беспозвоночные, круглоротые, рыбы, земноводные, пресмыкающиеся) называются пойкилотермами. Среди них есть стенотермы (криофилы - приспособлены небольшим перепадам низких температур и термофилы - приспособлены небольшим перепадам высоких температур) и эвритермы, которые могут существовать при пределах большой температурной амплитуде. Приспособления к перенесению низких температур, позволяющие регулировать обмен веществ в течение длительного времени, осуществляется у организмов двумя способами: а) способность к биохимическим и физиологическим перестройкам - накопление антифризов, которые понижают точку замерзания жидкостей в клетках и тканях и следовательно препятствуют образованию льда; изменение набора, концентрации и активности ферментов, изменение; б) выносливость к замерзанию (холодостойкость) - это временное прекращение активного состояния (гипобиоз или криптобиоз) или накопление в клетках глицерина, сорбита, маннита, которые препятствуют кристаллизации жидкости.

У эвритермов хорошо развита способность перехода в латентное состояние при значительных отклонениях температуры от оптимального значения. После холодового угнетения организмы при определенной температуре восстанавливают нормальный обмен веществ, а это значение температуры называется температурным порогом развития, или биологическим нулем развития.

В основе сезонных перестроек у видов – эвритермов, имеющих широкое распространение, лежит акклимация (сдвиг температурного оптимума), когда происходит инактивация одних генов и включение других, отвечающих за замену одних ферментов другими. Это явление обнаруживается в разных частях ареала.

У растений метаболическое тепло крайне ничтожно, поэтому их существование определяется температурой воздуха в пределах местообитания. Растения адаптируются к перенесению достаточно больших колебаний температуры. Главным при этом является транспирация, охлаждающая поверхность листьев при перегреве; уменьшение листовой пластинки, подвижность листа, опушение, восковой налет. К холодным условия растения приспосабливаются с помощью формы роста (карликовость, подушковидный рост, шпалерность), окраски. Все это относится к физической терморегуляии. Физиологическая терморегуляция – это опад листвы, отмирание наземной части, перевод свободной воды в связанное состояние, накопление антифризов и т. д.).

Пойкилотермные животные имеют возможность испарительной терморегуляции, связанной с их перемещением в пространстве (земноводные, рептилии). Они выбирают наиболее оптимальные условия, производят много внутреннего (эндогенного) тепла в процессе сокращения мускулатуры или мышечной дрожи (разогревают мышцы во время передвижения). Животные имеют поведенческие адаптации (поза, укрытия, норы, гнезда).

Гомойтермные животные (птицы и млекопитающие) имеют постоянную температуру тела и мало зависят от температуры окружающей среды. Для них характерны адаптации, основанные на резком повышении окислительных процессов в результате совершенства нервной, кровеносной, дыхательной и других систем органов. У них существует биохимическая терморегуляция (при понижении температуры воздуха усиливается обмен липидов; усиливаются окислительные процессы, особенно в скелетных мышцах; есть специализированная бурая жировая ткань, в которой вся освобождающаяся химическая энергия идет на образование АТФ, а на обогревание организма; увеличивается объем потребляемой пищи). Но такая терморегуляция имеет климатические ограничения (невыгодна зимой, в полярных условия, летом в тропическом и экваториальном поясах).

Экологически выгодна физическая терморегуляция(рефлек-торное сужение и расширение кровеносных сосудов кожи, теплоизоляционное действие меха и перьев, противоточный теплообмен), т.к. осуществляется за счет сохранения тепла в теле (Чернова, Былова, 2004).

Поведенческая терморегуляция гомойтермов характеризуется разнообразием: изменение позы, поиски укрытий, сооружение сложных нор, гнезд, миграции, групповое поведение и пр.

Важнейшим экологическим фактором для организмов является свет. Процессы, протекающие под действием света - это фотосинтез (используется 1-5% падающего света), транспирация (используется 75% падающего света расходуется на испарение воды), синхронизация жизнедеятельности, движение, зрение, синтез витаминов.

Морфология растений и структура растительных сообществ организованы для наиболее эффективного восприятия солнечной энергии. Светоприемная поверхность растений Земного шара в 4 раза больше, чем поверхность планеты (Акимова, Хаскин, 2000). Для живых организмов имеет значение длина волн, т.к. лучи разной длины имеют разное биологическое значение: инфракрасное излучение (780 – 400 нм) действует на тепловые центры нервной системы, регулируя окислительные процессы, двигательные реакции и др, ультрафиолетовые лучи (60 - 390 нм) действуя на покровные ткани, способствуют выработке различных витаминов, стимулируют рост и размножение клеток.

Особое значение имеет видимый свет, т.к. для растений важен качественный состав света. В спектре лучей выделяют фотосинтетическую активную радиацию (ФАР). Длина волн этого спектра лежит в пределах 380 – 710 (370- 720 нм).

Сезонная динамика освещенности связана с закономерностями астрономического характера, сезонной климатической ритмикой данной местности и на разных широтах выражена по разному. Для нижних ярусов на эти закономерности налагается и фенологическое состояние растительности. Большое значение имеет суточный ритм изменения освещенности. Ход радиации нарушается изменениями состояния атмосферы, облачности и др. (Горышина,1979).

Растение представляет собой непрозрачное тело, которое частично отражает свет, поглощает и пропускает. В клетках и тканях листьев есть различные образования которые обеспечивают поглощение и пропускание света Для повышения продуктивности растения увеличивают общую площадь и количество фотосинтезирующих элементов, что достигается многоэтажным расположением листьев на растении; ярусным расположением растений в сообществе.

По отношению к силе освещения выделяют три группы: светолюбивые, тенелюбивые, теневыносливые, которые отличаются анатомо-морфологическими адаптациями (у светолюбивых растений листья - мельче, подвижные, опушенные, имеют восковой налет, толстую кутикулу, кристаллические выключения и др. у тенелюбивых - листья крупные, хлоропласты крупные и многочисленные); физиологическими адаптациями (разные значения световой компенсации).

Реакция на длину светового дня (продолжительность освещения) называется фотопериодизмом. У растений такие важные процессы как цветение, образование семян, рост, переход в состояние покоя, листопад связан с сезонными изменениями длины дня и температурой. Для цветения одних растений нужна длина дня свыше 14 часов, для других достаточно 7 часов, третьи цветут независимо от длины дня.

Для животных свет информационное значение. Прежде всего по суточной активности животные делятся на дневных, сумеречных, ночных. Органом, помогающим ориентироваться в пространстве, являются глаза. У разных организмов разное стереоскопическое зрение - у человека общее зрение 180 ° - стереоскопическое-140 ° , у кролика - общее 360 ° , стереоскопическое20 ° . Бинокулярное зрение в основном характерно для хищных животных (кошачьих и птиц). Кроме того, реакцией на свет определяется фототаксис (движение на свет),

размножение, навигация (ориентирование на положение Солнца), биолюминенценция. Свет является сигналом для привлечения особей другого пола.

Важнейшим экологическим фактором в жизни наземных организмов является вода. Она необходима для поддержания структурной целостности клеток, тканей, всего организма, т.к. является основной частью протоплазмы клеток, тканей, растительных и животных соков. Благодаря воде осуществляются биохимические реакции, поступление питательных веществ, газообмен, выделение и др. Содержание воды в организме растений и животных достаточно высокое (в листьях трав - 83-86%, листьях деревьев - 79-82%. стволах деревьев 40-55%, в телах насекомых - 46-92%, земноводных – до 93%, млекопитающих - 62-83%).

Существование в наземно-воздушной среде ставит перед организмами важную проблему сохранения воды в теле. Поэтому форма и функции растений и животных суши приспособлены к защите от иссушения. В жизни растений важно поступление воды, проведение ее и транспирация, водный баланс, (Вальтер, 1031,1937, Шафер, 1956). Изменения водного баланса лучше всего отражает сосущая сила корней.

Растение может всасывать воду из почвы до тех пор, пока сосущая сила корней может конкурировать с сосущей силой почвы. Сильно разветвленная корневая система обеспечивает большую площадь соприкосновения поглощающей части корня с почвенными растворами. Общая протяженность корней может достигать 60 км. Сосущая сила корней меняется в зависимости от погоды, от экологических свойств. Чем больше всасывающая поверхность корней, тем больше поглощается воды.

По регуляции водного баланса растения делятся на пойкилогидрические (водоросли, мхи, папоротники, некоторые цветковые) и гомойгидрические (большинство высших растений).

По отношению к водному режиму выделяют экологические группы растений.

1. Гигрофиты - наземные растения, обитающие во влажных местообитаниях с высокой влажностью воздуха и почвенным водоснабжением. Характерными признаками гигрофитов являются толстые слаборазветвленные корни, воздухоносные полости в тканях, открытые устьица.

2. Мезофиты-растения умеренно увлажненных местообитаний. Способность переносить почвенную и атмосферную засуху у них ограничены. Могут встречаться в засушливых местообитаниях - быстро развиваясь за короткий период. Характерна хорошо развитая корневая система с многочисленными корневыми волосками, регуляция интенсивности транспирации.

3. Ксерофиты - растения сухих местообитаний. Это засухоустойчиваые растения, сухотерпцы. Степные ксерофиты могут терять без ущерба до 25 % воды, пустынные - до 50% содержащейся в них воды (для сравнения лесные мезофиты увядают при потере 1% содержащейся в листьях воды). По характеру анатомо-морфологических и физиологических адаптаций, обеспечивающих активную жизнь этих растений при дефиците влаги, ксерофиты делятся на суккуленты (имеют мясистые и сочные листья и стебли, способны накапливать в тканях большое количество воды, развивают небольшую сосущую силу и впитывают влагу атмосферных осадков) и склерофиты (сухие на вид растения, интенсивно испаряющие влагу, имеют узкие и мелкие листья, которые иногда сворачиваются в трубочку, способны выдерживать сильное обезвоживание, сосущая сила корней может быть до нескольких десятков атмосфер).

У разных групп животных в процессе приспособления к условиям наземного существования главным было предотвращение потерь воды. Животные получают воду разными способами – через питье, с сочной пищей, в результате метаболизма (за счет окисления и расщепления жиров, белков и углеводов). Некоторые животные могут впитывать воду через покровы из влажного субстрата или воздуха. Потери воды происходят в результате испарения с покровов, испарения со слизистых оболочек дыхательных путей, выделения мочи и непереваренных остатков пищи. Животные, получающие воду через питье, зависят от расположения водоемов (крупные млекопитающие, многие птицы).

Важным фактором для животных является влажность воздуха, т.к. этот показатель определяет величину испарения с поверхности тела. Именно поэтому для водного баланса организма животных имеет значение строение покровов тела. У насекомых уменьшение испарения воды с поверхности тела обеспечивает почти непроницаемая кутикула и специализированные органы выделения (мальпигиевы трубочки), выделяющие почти нерастворимый продукт обмена, и дыхальца, уменьшающие потери воды через систему газообмена - через трахеи и трахеолы.

У амфибий основная масса воды в организм поступает через проницаемую кожу. Проницаемость кожи регулируется гормоном, который выделяется задней долей гипофиза. Амфибии выделяют очень большое количество разбавленной мочи, гипотоничной по отношению к жидкостям тела. В засушливых условиях амфибии могут уменьшать потери воды с мочой. Кроме того, эти животные могут накапливать воду в мочевом пузыре и подкожных лимфатических пространствах.

Рептилии обладают множеством адаптаций разного уровня - морфологических (потере воды препятствует ороговевшая кожа), физиологических (легкие, расположенные внутри тела, что снижает потери воды), биохимических (в тканях образуется мочевая кислота, которая выводится без большой потери влаги, ткани способны переносить повышение концентрации солей на 50%).

У птиц скорость испарения невелика (кожа относительно непроницаема для воды, отсутствуют потовые железы и перья). Птицы теряют воду (до 35% веса тела за сутки) при дыхании из-за высокой вентиляции в легких и высокой температурой тела. У птиц есть процесс реабсорбции воды из части воды из мочи и фекалий. У некоторых морских птиц (пингвины, олуши, бакланы, альбатросы), которые питаются рыбой и пьют морскую воду, есть солевые железы, расположенные в глазницах, с помощью которых выводится избыток солей из организма.

У млекопитающих органами выделения и осморегуляции служат парные сложно устроенные почки, которые снабжаются кровью и регулируют состав крови. Это обеспечивает постоянный состав внутриклеточной и внутритканевой жидкости. Относительно стабильное осмотическое давление крови поддерживается за счет баланса между поступлением воды с питьем и потерей воды с выдыхаемым воздухом, потом, выделяемыми калом и мочой. Ответственным за тонкую регуляцию осмотического давления является антидиуретический гормон (АДГ), который выделяется из задней доли гипофиза.

Среди животных выделяют группы: гигрофилов, у которых механизмы регуляции водного обмена слабо развиты или вообще отсутствуют (это влаголюбивые животные, нуждающиеся в высокой влажности среды - ногохвостки, мокрицы, комары, другие членистоногие, наземные моллюски и амфибии); ксерофилов, имеющих хорошо развитые механизмы регуляции водного обмена и приспособления к удержанию воды в теле, обитающих в засушливых условиях; мезофилов, обитающих в условиях умеренной влажности.

Косвенно действующим экологическим фактором в наземно-воздушной среде является рельеф. Все формы рельефа влияют на распространение растений и животных через изменение гидротермического режима или почвенно-грунтового увлажнения.

В горах на разной высоте над уровнем моря изменяются климатические условия, следствием чего является высотная поясность. Географическая изоляция в горах способствует образованию эндемиков, сохранению реликтовых видов растений и животных. Речные поймы способствую продвижению на север более южных группировок растений и животных. Большое значение имеет экспозиция склонов, которая создает условия для распространения на север по южным склонам теплолюбивых сообществ, а по северным склонам на юг холодолюбивых сообществ («правило предварения», В.В. Алехина).

Почва существует только в наземно-воздушной среде и формируется в результате взаимодействия возраста территории, материнской породы, климата, рельефа, растений и животных, деятельности человека. Экологическое значение имеет механический состав (размер минеральных частиц), химический состав (рН водного раствора), засоление почв, почвенное богатство. Характеристики почв также действуют на живые организмы как косвенные факторы, изменяя термо-гидрологический режим, вызывая у растений (в первую очередь) приспособления к динамике этих условий и влияя на пространственную дифференциацию организмов.

Слоистое строение оболочек Земли и состав атмосферы; световой режим как фактор наземно-воздушной среды; адаптации организмов к различным световым режимам; температурный режим в наземно-воздушной среде, температурные адаптации; загрязнения наземно-воздушной среды

Наземно-воздушная среда - самая сложная по экологическим условиям жизни. Жизнь на суше потребовала таких морфологических и биохимических приспособлений, которые оказались возможны лишь при достаточно высоком уровне организации как растений, так и животных. На рис. 2 изображена схема оболочек Земли. К наземновоздушной среде можно отнести наружную часть литосферы и нижнюю часть атмосферы. Атмосфера, в свою очередь, имеет довольно четко выраженное слоистое строение. Нижние слои атмосферы отображены на рис. 2. Поскольку основная масса живых существ обитает в тропосфере, именно этот слой атмосферы входит в понятие наземно-воздушной среды. Тропосфера - самая нижняя часть атмосферы. Высота ее в разных областях от 7 до 18 км, в ней содержится основная масса водяных паров, которые, конденсируясь, образуют облака. В тропосфере происходит мощное перемещение воздуха, и температура падает в 1 среднем на 0,6°С с поднятием на каждые 100 м.

Атмосфера Земли состоит из механической смеси газов, химически не действующих друг на друга. В ней происходят все метеорологические процессы, совокупность которых называется климатом. Верхней границей атмосферы условно считается 2000 км, т. е. ее высота составляет У 3 часть радиуса Земли. В атмосфере непрерывно протекают различные физические процессы: изменяются температура, влажность, происходит конденсация водяных паров, возникают туманы, облака, солнечные лучи нагревают атмосферу, ионизируя ее, и т. д.

Основная масса воздуха сосредоточена в слое 70 км. Сухой воздух содержит (в %): азота - 78,08; кислорода - 20,95; аргона - 0,93; углекислого газа - 0,03. Остальных газов очень мало. Это водород, неон, гелий, криптон, радон, ксенон - большинство инертных газов.

Воздух атмосферы является одним из основных жизненно важных элементов окружающей среды. Он надежно защищает планету от вредного космического излучения. Под воздействием атмосферы на Земле совершаются важнейшие геологические процессы, которые в конечном итоге формируют ландшафт.

Атмосферный воздух относится к категории неисчерпаемых ресурсов, но интенсивное развитие промышленности, рост городов, расширение исследований космического пространства усиливают отрицательное антропогенное воздействие на атмосферу. Поэтому вопрос охраны атмосферного воздуха становится все более актуальным.

Кроме воздуха определенного состава, на живые организмы, населяющие наземно-воздушную среду, воздействуют давление воздуха и влажность, а также солнечная радиация и температура.

Рис. 2.

Световой режим, или солнечная радиация. Для осуществления процессов жизнедеятельности всем живым организмам необходима энергия, поступающая извне. Основным ее источником является солнечная радиация.

Действие разных участков спектра солнечного излучения на живые организмы различно. Известно, что в спектре солнечных лучей выделяют ультрафиолетовую, видимую и инфракрасную области, которые, в свою очередь, состоят из световых волн разной длины (рис. 3).

Среди ультрафиолетовых лучей (УФЛ) до поверхности Земли доходят только длинноволновые (290-300 нм), а коротковолновые (менее 290 нм), губительные для всего живого, практически полностью поглощаются на высоте около 20-25 км озоновым экраном - тонким слоем атмосферы, содержащим молекулы 0 3 (см. рис. 2).


Рис. 3. Биологическое действие разных участков спектра солнечного излучения: 1 - денатурация белка; 2 - интенсивность фотосинтеза пшеницы; 3 - спектральная чувствительность глаза человека. Заштрихована область ультрафиолетового излучения, не проникающая

сквозь атмосферу

Длинноволновые ультрафиолетовые лучи (300-400 нм), обладающие большой энергией фотонов, имеют высокую химическую и мутагенную активность. Большие дозы их вредны для организмов.

В диапазоне 250-300 нм УФЛ оказывают мощное бактерицидное действие и вызывают у животных образование антирахитного витамина Д, т. е. в небольших дозах УФЛ необходимы человеку и животным. При длине 300-400 нм УФЛ вызывают у человека загар, который является защитной реакцией кожи.

Инфракрасные лучи (ИКЛ) с длиной волны более 750 нм оказывают тепловое действие, не воспринимаются глазом человека и обеспечивают тепловой режим планеты. Особенно важны эти лучи для холоднокровных животных (насекомых, пресмыкающихся), которые используют их для повышения температуры тела (бабочки, ящерицы, змеи) или для охоты (клещи, пауки, змеи).

В настоящее время изготовлено много приборов, в которых используется та или иная часть спектра: ультрафиолетовые облучатели, бытовые приборы с инфракрасным излучением для быстрого приготовления пищи и т. д.

Видимые лучи с длиной волны 400-750 нм имеют большое значение для всех живых организмов.

Свет как условие жизни растений. Свет совершенно необходим растениям. Зеленые растения используют солнечную энергию именно этой области спектра, улавливая ее в процессе фотосинтеза:

В связи с разной потребностью в световой энергии у растений возникают различные морфологические и физиологические адаптации к световому режиму обитания.

Адаптация - это системы регулирования обменных процессов и физиологических особенностей, обеспечивающих максимальную приспособленность организмов к условиям окружающей среды.

В соответствии с адаптациями к световому режиму растения делят на следующие экологические группы.

  • 1. Светолюбивые - имеющие следующие морфологические адаптации: сильноветвящиеся побеги с укороченными междоузлиями, розе- точные; листья мелкие или с сильно рассеченной листовой пластинкой, нередко с восковым налетом или опушением, часто повернуты ребром к свету (например, акация, мимоза, софора, василек, ковыль, сосна, тюльпан).
  • 2. Тенелюбивые - постоянно находящиеся в условиях сильного затенения. Листья у них темно-зеленого цвета, располагаются горизонтально. Это растения нижних ярусов лесов (например, грушанки, майник двулистный, папоротники и т. д.). При недостатке света живут глубоководные растения (красные и бурые водоросли).
  • 3. Теневыносливые - могут переносить затенение, но хорошо растут и на свету (например, лесные травы и кустарники, растущие и в затененных местах, и на опушках, а также дуб, бук, граб, ель).

По отношению к свету растения в лесу располагаются ярусами. Кроме того, даже у одного и того же дерева листья по-разному улавливают свет в зависимости от яруса. Как правило, они составляют листовую мозаику, т. е. располагаются таким образом, чтобы увеличить листовую поверхность для лучшего улавливания света.

Световой режим меняется в зависимости от географической широты, времени суток и времени года. В связи с вращением Земли световой режим имеет отчетливую суточную и сезонную ритмичность. Реакция организма на смену режима освещения называется фотопериодизмом. В связи с фотопериодизмом в организме изменяются процессы обмена веществ, роста и развития.

С фотопериодизмом у растений связано явление фототропизма - движение отдельных органов растения к свету. Например, движение корзинки подсолнуха в течение дня вслед за солнцем, раскрывание соцветий у одуванчика и вьюнка утром и закрывание их вечером, и наоборот - открывание вечером цветов ночной фиалки и душистого табака и закрывание их утром (суточный фотопериодизм).

Сезонный фотопериодизм наблюдается в широтах со сменой времен года (умеренные и северные широты). С наступлением длинного дня (весной) в растениях наблюдается активное сокодвижение, почки набухают и раскрываются. При наступлении осеннего короткого дня растения сбрасывают листву и готовятся к зимнему покою. Необходимо различать растения «короткого дня» - они распространены в субтропиках (хризантемы, перилла, рис, соя, дурнишник, конопля); и растения «длинного дня» (рудбекия, хлебные злаки, крестоцветные, укроп) - они распространены в основном в умеренных и приполярных широтах. Растения «длинного дня» не могут развиваться на юге (они не дают семян), то же относится и к растениям «короткого дня», если их выращивать на севере.

Свет как условие жизни животных. Для животных свет не является фактором первостепенного значения, как для зеленых растений, так как они существуют за счет энергии солнца, накопленной этими растениями. Тем не менее животным нужен свет определенного спектрального состава. В основном свет необходим им для зрительной ориентации в пространстве. Правда, не у всех животных есть глаза. У примитивных это просто фоточувствительные клетки или даже место в клетке (например, стигма у одноклеточных организмов или «светочувствительный глазок»).

Образное видение возможно только при достаточно сложном устройстве глаза. Например, пауки могут различать контуры движущихся предметов только на расстоянии 1-2 см. Глаза позвоночных воспринимают форму и размеры предметов, их цвет и определяют расстояние до них.

Видимый свет - это условное понятие для разных видов животных. Для человека это лучи от фиолетового до темно-красного (вспомним цвета радуги). Гремучие змеи, например, воспринимают инфракрасную часть спектра. Пчелы же различают многоцветье ультрафиолетовых лучей, но не воспринимают красных. Спектр видимого света для них сдвинут в ультрафиолетовую область.

Развитие органов зрения во многом зависит от экологической обстановки и условий среды обитания организмов. Так, у постоянных обитателей пещер, куда не проникает солнечный свет, глаза могут быть полностью или частично редуцированы: у слепых жужелиц, летучих мышей, некоторых амфибий и рыб.

Способность к цветовому зрению зависит также от того, дневной или ночной образ жизни ведут организмы. Собачьи, кошачьи, хомяки (которые питаются, охотясь в сумерках) все видят в черно-белом изображении. Такое же зрение и у ночных птиц - сов, козодоев. Дневные же птицы имеют хорошо развитое цветовое зрение.

У животных и птиц также существуют приспособления к дневному и ночному образу жизни. Например, большинство копытных, медведи, волки, орлы, жаворонки активны днем, тогда как тигры, мыши, ежи, совы наибольшую активность проявляют ночью. Продолжительность светового дня влияет на наступление брачного периода, миграций и перелетов у птиц, спячки у млекопитающих и т. д.

Животные ориентируются с помощью органов зрения во время дальних перелетов и миграций. Птицы, например, с поразительной точностью выбирают направление полета, преодолевая многие тысячи километров от гнездовий до мест зимовок. Доказано, что при таких дальних перелетах птицы хотя бы частично ориентируются по Солнцу и звездам, т. е. астрономическим источникам света. Они способны к навигации, изменению ориентации, чтобы попасть в нужную точку Земли. Если птиц перевозят в клетках, то они правильно выбирают направление на зимовку из любой точки Земли. В сплошной туман птицы не летают, так как в процессе полета часто сбиваются с пути.

Среди насекомых способность к такого рода ориентации развита у пчел. В качестве ориентира они используют положение (высоту) Солнца.

Температурный режим в наземно-воздушной среде. Температурные адаптации. Известно, что жизнь есть способ существования белковых тел, поэтому границы существования жизни - это температуры, при которых возможно нормальное строение и функционирование белков, в среднем от 0°С до +50°С. Однако некоторые организмы обладают специализированными ферментными системами и приспособлены к активному существованию при температурах, выходящих за указанные пределы.

Виды, предпочитающие холод (их называют криофилами ), могут сохранять активность клеток до -8°... -10°С. Переохлаждение способны выносить бактерии, грибы, лишайники, мхи, членистоногие. Наши деревья также не погибают при низких температурах. Важно только, чтобы в период подготовки к зиме вода в клетках растений перешла в особое состояние, а не превратилась в лед - тогда клетки погибают. Растения преодолевают переохлаждение, накапливая в своих клетках и тканях вещества - осмотики-протекторы: различные сахара, аминокислоты, спирты, которые «выкачивают» излишнюю воду, не давая ей превратиться в лед.

Существует группа видов организмов, оптимум жизни которых - высокие температуры, их называют термофилами. Это разнообразные черви, насекомые, клещи, обитающие в пустынях и жарких полупустынях, это бактерии горячих источников. Есть источники с температурой + 70°С, содержащие живых обитателей - сине-зеленые водоросли (цианобактерии), некоторые виды моллюсков.

Если же принимать во внимание и латентные (длительно покоящиеся) формы организмов, такие, как споры некоторых бактерий, цисты, споры и семена растений, то они могут выдерживать значительно отклоняющиеся от нормы температуры. Споры бактерий могут выдерживать нагревание до 180°С. Многие семена, пыльца растений, цисты, одноклеточные водоросли выдерживают замораживание в жидком азоте (при -195,8°С), а затем длительное хранение при -70°С. После размораживания и помещения в благоприятные условия и достаточную питательную среду эти клетки могут стать вновь активными и начать размножаться.

Временная приостановка всех жизненных процессов организма называется анабиозом. Анабиоз может наступать у животных как при понижении температуры среды, так и при ее повышении. Например, у змей и ящериц при повышении температуры воздуха выше 45°С наступает тепловое оцепенение. У земноводных при температуре воды ниже 4°С жизненная активность практически отсутствует. Из состояния анабиоза живые существа могут возвратиться к нормальной жизни только в том случае, если не нарушена структура макромолекул в их клетках (в первую очередь ДНК и белков).

Устойчивость к температурным колебаниям у наземных обитателей различна.

Температурные адаптации у растений. Растения, будучи организмами неподвижными, вынуждены приспосабливаться к тем температурным колебаниям, которые существуют в местах их обитания. Они обладают специфическими системами, предохраняющими от переохлаждения или перегрева. Транспирация - это система испарения воды растениями через устьичный аппарат, которая спасает их от перегрева. Некоторые растения приобрели даже устойчивость к пожарам - их называют пирофитами. Пожары часто бывают в саваннах, кустарниковых зарослях. У деревьев саванн толстая кора, пропитанная огнеупорными веществами. Плоды и семена их имеют толстые, одревесневшие покровы, которые растрескиваются, когда охвачены огнем, что помогает семенам попасть в землю.

Температурные адаптации животных. Животные, по сравнению с растениями, обладают большими возможностями приспосабливаться к изменению температуры, так как способны передвигаться, обладают мускулатурой и производят собственное внутреннее тепло. В зависимости от механизмов поддержания постоянной температуры тела различают пойкилотермных (холоднокровных) и гомойотермных (теплокровных) животных.

Пойкилотермные - это насекомые, рыбы, земноводные, пресмыкающиеся. Их температура тела меняется вместе с температурой окружающей среды.

Гомойотермные - животные с постоянной температурой тела, способные ее поддерживать даже при сильных колебаниях наружной температуры (это млекопитающие и птицы).

Основные пути температурных адаптаций:

  • 1) химическая терморегуляция - увеличение теплопродукции в ответ на понижение температуры окружающей среды;
  • 2) физическая терморегуляция - способность удерживать тепло благодаря волосяному и перьевому покровам, распределению жировых запасов, возможности испарительной теплоотдачи и т. п.;

3) поведенческая терморегуляция - способность перемещаться из мест крайних температур в места оптимальных температур. Это основной путь терморегуляции у пойкилотермных животных. При повышении или понижении температуры они стремятся изменить позу или спрятаться в тень, в нору. Пчелы, муравьи, термиты строят гнезда с хорошо регулируемой внутри них температурой.

У теплокровных система терморегуляции значительно усовершенствовалась (хотя она слаба у детенышей и птенцов).

Для иллюстрации совершенства терморегуляции у высших животных и человека можно привести такой пример. Около 200 лет назад доктор Ч. Блэгден в Англии поставил такой опыт: он вместе с друзьями и собакой провел 45 мин в сухой камере при +126°С без последствий для здоровья. Любители финской бани знают, что можно проводить в сауне с температурой более + 100°С некоторое время (для каждого - свое), и это полезно для здоровья. Но мы также знаем, что, если держать при такой температуре кусок мяса, он сварится.

При действии холода у теплокровных усиливаются окислительные процессы, особенно в мышцах. Вступает в действие химическая терморегуляция. Отмечается мышечная дрожь, приводящая к выделению дополнительного тепла. Особенно усиливается обмен липидов, так как в жирах содержится значительный запас химической энергии. Поэтому накопление жировых запасов обеспечивает лучшую терморегуляцию.

Усиленное производство теплопродукции сопровождается потреблением большого количества пищи. Так, птицам, остающимся на зиму, нужно много корма, им страшны не морозы, а бескормица. При хорошем урожае ели и сосны клесты, например, даже зимой выводят птенцов. У людей - жителей суровых сибирских или северных районов - из поколения в поколение вырабатывалось высококалорийное меню - традиционные пельмени и другая калорийная пища. Поэтому, прежде чем следовать модным западным диетам и отвергать пищу предков, нужно вспомнить о существующей в природе целесообразности, лежащей в основе многолетних традиций людей.

Эффективным механизмом регуляции теплообмена у животных, как и у растений, является испарение воды путем потоотделения или через слизистые оболочки рта и верхних дыхательных путей. Это пример физической терморегуляции. Человек при сильной жаре может выделить до 12 л пота в день, рассеивая при этом тепла в 10 раз больше нормы. Выделяемая вода частично должна возвращаться через питье.

Теплокровным животным, так же как и холоднокровным, свойственна поведенческая терморегуляция. В норах живущих под землей животных колебания температур тем меньше, чем глубже нора. В искусно построенных гнездах пчел поддерживается ровный, благоприятный микроклимат. Особый интерес представляет групповое поведение животных. Например, пингвины в сильный мороз и буран образуют «черепаху» - плотную кучу. Те, кто оказался с краю, постепенно пробираются внутрь, где поддерживается температура около +37°С. Там же, внутри, помещаются и детеныши.

Таким образом, для того чтобы жить и размножаться в определенных условиях наземно-воздушной среды, у животных и растений в процессе эволюции выработались самые разнообразные приспособления и системы соответствия этой среде обитания.

Загрязнения наземно-воздушной среды. В последнее время все более значительным внешним фактором, изменяющим наземно-возду- шую среду обитания, становится антропогенный фактор.

Атмосфера, как и биосфера, имеет свойство самоочищения, или сохранения равновесия. Однако объем и скорость современных загрязнений атмосферы превосходят природные возможности их обезвреживания.

Во-первых, это природное загрязнение - различная пыль: минеральная (продукты выветривания и разрушения горных пород), органическая (аэропланктон - бактерии, вирусы, пыльца растений) и космическая (частицы, попадающие в атмосферу из космоса).

Во-вторых, это искусственные (антропогенные) загрязнения - промышленные, транспортные и бытовые выбросы в атмосферу (пыль цементных заводов, сажа, различные газы, радиоактивное загрязнение, пестициды).

По приблизительным подсчетам, в атмосферу за последние 100 лет выброшено 1,5 млн т мышьяка; 1 млн т никеля; 1,35 млн т кремния, 900 тыс. т кобальта, 600 тыс. т цинка, столько же меди и других металлов.

Химические предприятия выбрасывают углекислый газ, окись железа, оксиды азота, хлор. Из пестицидов особенно токсичны фосфо- рорганические соединения, из которых в атмосфере получаются еще более токсичные.

В результате выбросов в городах, где снижено ультрафиолетовое излучение и наблюдается большое скопление людей, происходит деградация воздушного бассейна, одним из проявлений которой является смог.

Смог бывает «классический» (смесь токсичных туманов, возникающих при незначительной облачности) и «фотохимический » (смесь едких газов и аэрозолей, которая образуется без тумана в результате фотохимических реакций). Наиболее опасен лондонский и лос-анджелесский смог. Он поглощает до 25 % солнечного излучения и 80 % ультрафиолетовых лучей, от этого страдает городское население.

Наземно-воздушная среда является самой сложной для жизни организмов. Физические факторы, ее составляющие, очень разнообразны: свет, температура. Но организмы приспособились в ходе эволюции к этим меняющимся факторам и выработали системы адаптации для обеспечения чрезвычайной приспособленности к условиям обитания. Несмотря на неисчерпаемость воздуха как ресурса окружающей среды, качество его стремительно ухудшается. Загрязнение воздуха - самая опасная форма загрязнения окружающей среды.

Вопросы и задания для самоконтроля

  • 1. Объясните, почему наземно-воздушная среда является самой сложной для жизни организмов.
  • 2. Приведите примеры адаптаций у растений и животных к высоким и низким температурам.
  • 3. Почему температура оказывает сильное влияние на жизнедеятельность любых организмов?
  • 4. Проанализируйте, как свет влияет на жизнедеятельность растений и животных.
  • 5. Охарактеризуйте, что такое фотопериодизм.
  • 6. Докажите, что различные волны светового спектра по-разному воздействуют на живые организмы, приведите примеры. Перечислите, на какие группы подразделяются живые организмы по способу использования энергии, приведите примеры.
  • 7. Прокомментируйте, с чем связаны сезонные явления в природе и как на них реагируют растения и животные.
  • 8. Объясните, почему загрязнение наземно-воздушной среды представляет наибольшую опасность для живых организмов.