Общее уравнение шредингера формула. Уравнение шредингера и физический смысл его решений

  • Дата: 22.09.2019

Двойственная природа света и вещества. Уравнение де Броиля.

Сосуществование двух серьезных научных теорий, каждая из которых объясняла одни свойства света, но не могла объяснить другие. Вместе же эти две теории полностью дополняли друг друга.

Свет одновременно обладает свойствами непрерывных электромагнитных волн и дискретных фотонов.

Взаимосвязь между корпускулярными и волновыми свойствами света находит простое толкование при статистическом подходе к распространению света.

Взаимодействие фотонов с веществом (например, при прохождении света через дифракционную решетку) приводит к перераспределению фотонов в пространстве и возникновению дифракционной картины на экране. Очевидно, что освещенность в различных точках экрана прямо пропорциональна вероятности попадания фотонов в эти точки экрана. Но, с другой стороны, из волновых представлений видно, что освещенность пропорциональна интенсивности света J, а та, в свою очередь, пропорциональна квадрату амплитуды А 2 . Отсюда вывод: квадрат амплитуды световой волны в какой-либо точке есть мера вероятности попадания фотонов в эту точку .

Уравнение де Броиля.

Физический смысл соотношения де Бройля: одна из физических характеристик любой частицы - ее скорость. Волна описывается длиной или частотой. Соотношение, связывающее импульс квантовой частицы р с длиной волны λ, которая ее описывает: λ = h/p где h - постоянная Планка.Иными словами, волновые и корпускулярные свойства квантовой частицы фундаментальным образом взаимосвязаны.

14)Вероятностная трактовка волн де Броиля. Если считать электрон частицей, то, чтобы электрон оставался на своей орбите, у него должна быть одна и та же скорость (или, вернее, импульс) на любом расстоянии от ядра. Если же считать электрон волной, то, чтобы он вписался в орбиту заданного радиуса, надо, чтобы длина окружности этой орбиты была равна целому числу длины его волны. Главный же физический смысл соотношения де Бройля в том, что мы всегда можем определить разрешенные импульсы или длины волн электронов на орбитах. Однако, соотношение де Бройля показывает, для большинства орбит с конкретным радиусом либо волновое, либо корпускулярное описание покажет, что электрон не может находиться на этом расстоянии от ядра.

Волны де Бройля не являются Э.М. или механическими волнами, а являются волнами вероятности. Модуль волны характеризует вероятность нахождения частицы в пространстве.

Соотношение неопределенностей Гейзенберга.

Δx*Δp x > h/2

где Δx - неопределенность (погрешность измерения) пространственной координаты микрочастицы, Δp - неопределенность импульса частицы на ось х, а h - постоянная Планка, равняется примерно 6,626 x 10 –34 Дж·с.

Чем меньше неопределенность в отношении одной переменной (например, Δx), тем более неопределенной становится другая переменная (Δv) На самом деле, если нам удастся абсолютно точно определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности. Т.е. если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представлении.

Уравнение Шредингера и его смысл.

Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции. Уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица. Вышеупомянутая волновая функция распределения вероятности, обозначаемая греческой буквой ψ («пси»), является решением следующего дифференциального уравнения (ничего страшного, если оно вам не понятно; главное - примите на веру, что это уравнение свидетельствует о том, что вероятность ведёт себя как волна):

где x - координата, h - постоянная Планка, а m, E и U - соответственно масса, полная энергия и потенциальная энергия частицы.

Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.

Статистическое толкование волн де Бройля и соотношение неопределенностей Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Y (х , у, z , t ), так как именно она, или, точнее, величина |Y | 2 , определяет вероятность пребывания частицы в момент времени t в объеме dV , т. е. в области с координатами х и x +dx , у и y +dy , z и z +dz . Ta к как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением , подобно уравнению, описывающему электромагнитные волны.

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид

где ћ =h /(2p ), т- масса частицы, D -оператор Лапласа i - мнимая единица, U (х, у, z , t ) - потенциальная функция частицы в силовом поле, в котором она движется, Y (х, у, z , t ) - искомая волновая функция частицы.

Уравнение (217.1) справедливо для любой частицы (со спином, равным 0), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью v <<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной производные должны быть непрерывны; 3) функция |Y | 2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, кото­рой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномер­ный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид , или в комплексной записи . Следовательно, плоская волна де Бройля имеет вид

(217.2)

(учтено, что w = E /ћ, k =p /ћ ). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только |Y | 2 , то это (см. (217.2)) несущественно. Тогда

Используя взаимосвязь между энергией Е и импульсом р (E =p 2 /(2m )) и подставляя выражения (217.3), получим дифференциальное уравнение

которое совпадает с уравнением (217.1) для случая U = 0 (мы рассматривали свободную частицу). Если частица движется в силовом поле, характеризуемом потенциальной энергией U , то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения и используя взаимосвязь между Е и р (для данного случая p 2 /(2m )=E –U ), прядем к дифференциальному уравнению, совпадающему с (217.1).

Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к кото­рым оно приводит.

Уравнение (217.1) является общим уравнением Шредингера . Его также называют уравнением Шредингера, зависящим от времени . Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость Y от времени, иными словами, найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U =U (x , у, z ) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем , так что

где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

откуда после деления на общий множитель и соответствующих преобразований придем к уравнению, определяющему функцию y :

(217.5)

Уравнение (217.5) называется уравнением Шредингера для стационарных состояний . В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями y . Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном , или сплошном , спектре , во втором - о дискретном спектре .

Обще уравнение Шредингера. Уравнение Шредингера для стационарных состояний

Статистическое толкование волн де Бройля (см. § 216) и соотношение неопределенностей Гейзенберга (см. 5 215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Ψ (х, у, z, t), так как именно она, или, точнее, величина |Ψ| 2 , определяет вероятность пребывания частицы в момент времени t в объеме dV, т. е. в области с координатами x и x+dx, y иy+dy, z и z+dz. Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера,как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид

где h=h/(2π), m-масса частицы, ∆ -оператор Лапласа (),

i - мнимая единица, U (х, у, z, t) - потенциальная функция частицы в силовом поле, в котором она движется, Ψ (х, у, z, t) - искомая волновая функция частицы.

Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. § 225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью υ<<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной (см. § 216); 2) производные

должны быть непрерывны; 3) функция |Ψ| 2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, которой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154)

Или в комплексной записи . Следовательно, плоская волна де Бройля имеет вид

(217.2)

(учтено, что ω = E/h, k=p/h). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только |Ψ| 2 , то это (см. (217.2)) несущественно. Тогда

,

; (217.3)

Используя взаимосвязь между энергией Е и импульсом p (E = p 2 /(2m)) и подставляя выражения (217.3), получим дифференциальное уравнение

которое совпадает с уравнением (217.1) для случая U= 0 (ми рассматривали свободную частицу).

Если частица движется в силовом поле, характеризуемом потенциальной энергией U, то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения используя взаимосвязь между Еи р (для данного случая р 2 /(2m)=E -U), прядем к дифференциальному уравнению, совпадающему с (217.1).

Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к которым оно приводит.

Уравнение (217.1) является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящем от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость Ψ от времени, иными словами, найти уравнение Шредингера для стационарных состоянии - состоянии с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U = U(х, у, z) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем

,

где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

откуда после деления на общий множитель е – i (E/ h) t и соответствующих преобразований придем к уравнению, определяющему функцию ψ:

(217.5)

Уравнение (217.5) называетсяуравнением Шредингера для стационарных состояний.

В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями ψ. Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называютсясобственными. Решения же, которые соответствуютсобственным значениям энергии, называютсясобственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

Уравнение Шрёдингера названо в честь австрийского физика Эрвина Шрёдингера (E. Schrödinger). Это основной теоретический инструмент квантовой механики. В квантовой механике уравнение Шрёдингера играет такую же роль, как уравнение движения (второй закон Ньютона) в механике классической. Уравнение Шрёдингера записывается для так называемой y - функции (пси - функции). В общем случае пси - функция – это функция координат и времени: y = y (x,y,z,t ). Если микрочастица находится в стационарном состоянии, то пси - функция не зависит от времени: y = y (x,y,z ).

В простейшем случае одномерного движения микрочастицы (например, только по оси x ) уравнение Шрёдингера имеет вид:

где y (x) – пси - функция, зависящая только от одной координаты x ; m масса частицы; - постоянная Планка (=h/2π ); E – полная энергия частицы, U – потенциальная энергия. В классической физике величина (E –U ) равнялась бы кинетической энергии частицы. В квантовой механике вследствие соотношения неопределенностей понятие кинетической энергии лишено смысла. Заметим, что потенциальная энергия U – это характеристика внешнего силового поля , в котором движется частица. Это величина вполне определенная. Она также является функцией координат, в данном случае U = U (x,y,z).

В трехмерном случае, когда y = y (x,y,z), вместо первого слагаемого в уравнении Шрёдингера следует записать сумму трех частных производных от пси-функции по трем координатам.

Для чего применяется уравнение Шрёдингера? Как уже отмечалось, это основное уравнение квантовой механики. Если его записать и решить (что вообще не простая задача) для конкретной микрочастицы, то мы получим значение пси-функции в любой точке пространства, в котором движется частица. Что это дает? Квадрат модуля пси-функции характеризуетвероятность обнаружения частицы в той или иной области пространства. Возьмем некоторую точку в пространстве с координатами x , y , z (рис.6). Какова вероятность обнаружить частицу в этой точке? Ответ: эта вероятность равна нулю! (точка не имеет размеров, попасть в точку частица просто физически не может). Значит, вопрос поставлен некорректно. Поставим его иначе: какова вероятность обнаружить частицу в малой области пространства объемом dV = dx dy dz с центром в выбранной точке? Ответ:

где dP – элементарная вероятность обнаружить частицу в элементарном объеме dV . Уравнение (22) справедливо для действительной пси-функции (она может быть и комплексной, в этом случае в уравнение (22) надо подставлять квадрат модуля пси-функции). Если область пространства имеет конечный объем V , то вероятность P обнаружить частицу в этом объеме находится интегрированием выражения (22) по объему V :

Напомним, что вероятностное описание движения микрочастиц – основная идея квантовой механики. Таким образом, с помощью уравнения Шрёдингера решается основная задача квантовой механики: описание движения исследуемого объекта, в данном случае квантово-механической частицы.

Отметим еще ряд важных обстоятельств. Как видно из формулы (21), уравнение Шрёдингера является дифференциальным уравнением второго порядка. Следовательно, в процессе его решения появятся две произвольные постоянные. Как их найти? Для этого используют так называемые граничные условия : из конкретного содержания физической задачи должно быть известно значение пси-функции на границах области движения микрочастицы. Кроме того, используется так называемое условие нормировки , которому должна удовлетворять пси-функция:

Смысл этого условия прост: вероятность обнаружить частицу хоть где-нибудь внутри области ее движения есть достоверное событие, вероятность которого равна единице.

Именно граничные условия наполняют решение уравнения Шрёдингера физическим смыслом. Без этих условий решение уравнения есть чисто математическая задача, лишенная физического смысла. В следующем разделе на конкретном примере рассмотрено применение граничных условий и условия нормировки при решении уравнения Шрёдингера.

Пси-функция

Волнова́я фу́нкция (функция состояния , пси-функция , амплитуда вероятности ) - комплекснозначная функция , используемая вквантовой механике для вероятностного описания состоянияквантовомеханической системы . В широком смысле - то же самое, что и вектор состояния .

Вариант названия «амплитуда вероятности» связан со статистической интерпретацией волновой функции: плотность вероятности нахождения частицы в данной точке пространства в данный момент времени равна квадрату абсолютного значения волновой функции этого состояния.

Физический смысл квадрата модуля волновой функции

Волновая функция зависит от координат (или обобщённых координат) системы и, в общем случае, от времени, и формируется таким образом, чтобы квадрат её модуля представлял собой плотность вероятности (для дискретных спектров - просто вероятность) обнаружить систему в положении, описываемом координатами в момент времени :

Тогда в заданном квантовом состоянии системы, описываемом волновой функцией , можно рассчитать вероятность того, что частица будет обнаружена в любой области пространства конечного объема : .

Набор координат, которые выступают в роли аргументов функции , представляет собой полный набор физических величин , которые можно измерить в системе. В квантовой механике возможно выбрать несколько полных наборов величин, поэтому волновая функция одного и того же состояния может быть записана от разных аргументов. Выбранный для записи волновой функции полный набор величин определяетпредставление волновой функции . Так, возможны координатное представление, импульсное представление, в квантовой теории поля используется вторичное квантование и представление чисел заполнения или представление Фока и др.

Если волновая функция, например, электрона в атоме, задана в координатном представлении, то квадрат модуля волновой функции представляет собой плотность вероятности обнаружить электрон в той или иной точке пространства. Если эта же волновая функция задана в импульсном представлении, то квадрат её модуля представляет собой плотность вероятности обнаружить тот или иной импуль с .

Сделаем рисунок

В нашей задаче функция U(x) имеет особый, разрывный вид: она равна нулю между стенками, а на краях ямы (на стенках) обращается в бесконечность:

Запишем уравнение Шредингера для стационарных состояний частиц в точках расположенных между стенками:

или, если учесть формулу (1.1)

К уравнению (1.3) необходимо добавить граничные условия на стенках ямы. Примем во внимание, что волновая функция связана с вероятностью нахождения частиц. Кроме того, по условиям задачи за пределами стенок частица не может быть обнаружена. Тогда волновая функция на стенках и за их пределами должна обращаться в нуль, и граничные условия задачи принимают простой вид:

Теперь приступим к решению уравнения (1.3) . В частности, можно учесть, что его решением являются волны де-Бройля. Но одна волна де-Бройля как решение, к нашей задаче явно не относится, так как она заведомо описывает свободную частицу, «бегущую» в одном направлении. У нас же частица бегает «туда-сюда» между стенками. В таком случае на основании принципа суперпозиции искомое решение можно попытаться представить в виде двух волн де-Бройля, бегущих друг другу навстречу с импульсами p и -p, то есть в виде:

Постоянные и можно найти из одного из граничных условий и условия нормировки. Последнее говорит о том, что если сложить все вероятности, то есть найти вероятность обнаружения электрона между стенками вообще в (любом месте), то получится единица (вероятность достоверного события равна 1), т.е.:

Согласно первому граничному условию имеем:

Таким образом, получим решение нашей задачи:

Как известно, . Поэтому найденное решение можно переписать в виде:

Постоянная А определяется из условия нормировки. Но здесь не она представляет особый интерес. Осталось неиспользованным второе граничное условие. Какой результат оно позволяет получить? Применительно к найденному решению (1.5) оно приводит к уравнению:

Из него видим, что в нашей задаче импульс p может принимать не любые значения, а только значения

Кстати, n не может равняться нулю, так как волновая функция тогда бы всюду на промежутке (0…l) равнялась нулю! Это означает, что частица между стенками не может находиться в покое! Она обязательно должна двигаться. В аналогичных условиях находятся электроны проводимости в металле. Полученный вывод распространяется и на них: электроны в металле не могут быть неподвижными.

Наименьший возможный импульс движущегося электрона равен

Мы указали, что импульс электрона при отражении от стенок меняет знак. Поэтому на вопрос, каков импульс у электрона, когда он заперт между стенками, определённо ответить нельзя: то ли +p, то ли -p. Импульс неопределённый. Его степень неопределённости, очевидно, определяется так: =p-(-p)=2p. Неопределённость же координаты равна l; если попытаться «поймать» электрон, то он будет обнаружен в пределах между стенками, но где точно - неизвестно. Поскольку наименьшее значение p равно , то получаем:

Мы подтвердили соотношение Гейзенберга в условиях нашей задачи, то есть при условии существования наименьшего значения p. Если же иметь в виду произвольно-возможное значение импульса, то соотношение неопределённости получает следующий вид:

Это означает, что исходный постулат Гейзенберга-Боpа о неопределённости и устанавливает лишь нижнюю границу неопределенностей, возможную при измерениях. Если в начале движения система была наделена минимальными неопределённостями, то с течением времени они могут расти.

Однако формула (1.6) указывает и на другой чрезвычайно интересный вывод: оказывается, импульс системы в квантовой механике не всегда в состоянии изменяться непрерывно (как это всегда имеет место в классической механике). Спектр импульса частицы в нашем примере дискретный, импульс частицы между стенками может изменяться только скачками (квантами). Величина скачка в рассмотренной задаче постоянна и равна .

На рис. 2. наглядно изображён спектр возможных значений импульса частицы. Таким образом, дискретность изменения механических величин, совершенно чуждая классической механике, в квантовой механике вытекает из ее математического аппарата. На вопрос, почему импульс изменяется скачками, наглядного найти нельзя. Таковы законы квантовой механики; наш вывод вытекает из них логически - в этом все объяснение.

Обратимся теперь к энергии частицы. Энергия связана с импульсом формулой (1). Если спектр импульса дискретный, то автоматически получается, что и спектр значений энергии частицы между стенками дискретный. И он находится элементарно. Если возможные значения согласно формуле (1.6) подставить в формулу (1.1), получим:

где n = 1, 2,…, и называется квантовым числом.

Таким образом, мы получили энергетические уровни.

рис. 3.

Рис. 3 изображает расположение энергетических уровней, соответствующее условиям нашей задачи. Ясно, что для другой задачи расположение энергетических уровней будет иным. Если частица является заряженной (например, это электрон), то, находясь не на низшем энергетическом уровне, она будет в состоянии спонтанно излучать свет (в виде фотона). При этом она перейдёт на более низкий энергетический уровень в соответствии с условием:

Волновые функции для каждого стационарного состояния в нашей задаче представляют собой синусоиды, нулевые значения которых обязательно попадают на стенки. Две такие волновые функции для n = 1,2 изображены на рис. 1.