Как передается звук в воде. Распространение звука

  • Дата: 18.09.2020

К основным законам распространения звука относятся законы его отражения и преломления на границах различных сред, а также дифракция звука и его рассеяние при наличии препятствий и неоднородностей в среде и на границах раздела сред.

На дальность распространения звука оказывает влияние фактор поглощения звука, то есть необратимый переход энергии звуковой волны в другие виды энергии, в частности, в тепло. Важным фактором является также направленность излучения и скорость распространения звука, которая зависит от среды и её специфического состояния.

От источника звука акустические волны распространяются во все стороны. Если звуковая волна проходит через сравнительно небольшое отверстие, то она распространяется во все стороны, а не идёт направленным пучком. Например, уличные звуки, проникающие через открытую форточку в комнату, слышны во всех её точках, а не только против окна.

Характер распространения звуковых волн у препятствия зависит от соотношения между размерами препятствия и длиной волны. Если размеры препятствия малы по сравнению с длиной волны, то волна обтекает это препятствие, распространяясь во все стороны.

Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального направления, то есть преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды в какую проникает звук. Если скорость звука во второй среде больше, то угол преломления будет больше угла падения, и наоборот.

Встречая на своём пути препятствие, звуковые волны отражаются от него по строго определённому правилу – угол отражения равен углу падения – с этим связано понятие эха. Если звук отражается от нескольких поверхностей, находящихся на разных расстояниях, возникает многократное эхо.

Звук распространяется в виде расходящейся сферической волны, которая заполняет всё больший объём. С увеличением расстояния, колебания частиц среды ослабевают, и звук рассеивается. Известно, что для увеличения дальности передачи звук необходимо концентрировать в заданном направлении. Когда мы хотим, например, чтобы нас услышали, мы прикладываем ладони ко рту или пользуемся рупором.

Большое влияние на дальность распространения звука оказывает дифракция, то есть искривление звуковых лучей. Чем разнороднее среда, тем больше искривляется звуковой луч и, соответственно, тем меньше дальность распространения звука.

Распространение звука

Звуковые волны могут распространяться в воздухе, газах, жидкостях и твердых телах. В безвоздушном пространстве волны не возникают. В этом легко убедиться на простом опыте. Если электрический звонок поместить под воздухонепроницаемый колпак, из которого откачен воздух, мы никакого звука не услышим. Но как только колпак наполнится воздухом, возникает звук.

Скорость распространения колебательных движений от частицы к частице зависит от среды. В далекие времена воины прикладывали ухо к земле и таким образом обнаруживали конницу противника значительно раньше, чем она появлялась в поле зрения. А известный ученый Леонардо да Винчи в 15 веке писал: «Если ты, будучи на море, опустишь в воду отверстие трубы, а другой конец ее приложишь к уху, то услышишь шум кораблей, очень отдаленных от тебя».

Скорость распространения звука в воздухе впервые была измерена в 17 веке Миланской академией наук. На одном из холмов установили пушку, а на другом расположился наблюдательный пункт. Время засекли и в момент выстрела (по вспышке) и в момент приема звука. По расстоянию между наблюдательным пунктом и пушкой и времени происхождения сигнала скорость распространения звука рассчитать уже не составляло труда. Она оказалась равной 330 метров в секунду.

В воде скорость распространения звука впервые была измерена в 1827 году на Женевском озере. Две лодки находились одна от другой на расстоянии 13847 метров. На первой под днищем подвесили колокол, а со второй опустили в воду простейший гидрофон (рупор). На первой лодке одновременно с ударом в колокол подожгли порох, на второй наблюдатель в момент вспышки запустил секундомер и стал, ждать прихода звукового сигнала от колокола. Выяснилось, что в воде звук распространяется в 4 с лишним раза быстрее, чем в воздухе, т.е. со скоростью 1450 метров в секунду.

Скорость распространения звука

Чем выше упругость среды, тем больше скорость: в каучуке50, в воздухе330, в воде1450, а в стали - 5000 метров в секунду. Если бы мы, находились в Москве, могли крикнуть так громко, чтобы звук долетел до Петербурга, то нас услышали бы там только через полчаса, а если бы звук на это же расстояние распространялся в стали, то он был бы принят через две минуты.

На скорость распространения звука оказывает влияние состояние одной и той же среды. Когда мы говорим, что в воде звук распространяется со скоростью 1450 метров в секунду, это вовсе не означает, что в любой воде и при любых условиях. С повышением температуры и солености воды, а так же с увеличением глубины, а следовательно, и гидростатического давления скорость звука возрастает. Или возьмем сталь. Здесь тоже скорость звука зависит как от температуры, так и от качественного состава стали: чем больше в ней углерода, тем она тверже, тем звук в ней распространяется быстрее.

Встречая на своем пути препятствие, звуковые волны отражаются от него по строго определенному правилу: угол отражения равен углу падения. Звуковые волны, идущие из воздуха, почти полностью отразятся от поверхности воды вверх, а звуковые волны, идущие от источника, находящегося в воде, отражаются от нее вниз.

Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального положения, т.е. преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды, в какую проникает звук. Если скорость звука во второй среде больше чем в первой, то угол преломления будет больше угла падения и наоборот.

В воздухе звуковые волны распространяются в виде расходящийся сферической волны, которая заполняет все больший объем, так как колебания частиц, вызванные источниками звука, передаются массе воздуха. Однако с увеличением расстояния колебания частиц ослабевают. Известно, что для увеличения дальности передачи, звук необходимо концентрировать в заданном направлении. Когда мы хотим, чтобы нас лучше было слышно, мы прикладываем ладони ко рту или пользуемся рупором. В этом случае звук будет ослабляться меньше, а звуковые волны - распространяются дальше.

При увеличении толщины стенки звуколокация на низких средних частотах увеличивается, но «коварный» резонанс совпадения, вызывающий удушение звуколокации, начинает проявляться, более низких частотах и захватывает более широкую их область.

Мы воспринимаем звуки, находясь на расстоянии от их источников. Обычно звук доходит до нас по воздуху. Воздух является упругой средой, передающей звук.

Если между источником и приёмником удалить звукопередающую среду, то звук распространяться не будет и, следовательно, приёмник не воспримет его. Продемонстрируем это на опыте.

Поместим под колокол воздушного насоса часы-будильник (рис. 80). Пока в колоколе находится воздух, звук звонка слышен ясно. При откачивании воздуха из-под колокола звук постепенно слабеет и, наконец, становится неслышимым. Без передающей среды колебания тарелки звонка не могут распространяться, и звук не доходит до нашего уха. Впустим под колокол воздух и снова услышим звон.

Рис. 80. Опыт, доказывающий, что в пространстве, где нет вещественной среды, звук не распространяется

Хорошо проводят звуки упругие вещества, например металлы, древесина, жидкости, газы.

Положим на один конец деревянной доски карманные часы, а сами отойдём к другому концу. Приложив ухо к доске, услышим ход часов.

Привяжем к металлической ложке бечёвку. Конец бечёвки приложим к уху. Ударяя по ложке, услышим сильный звук. Ещё более сильный звук услышим, если бечёвку заменим проволокой.

Мягкие и пористые тела - плохие проводники звука. Чтобы защитить какое-нибудь помещение от проникновения посторонних звуков, стены, пол и потолок прокладывают прослойками из звукопоглощающих материалов. В качестве прослоек используют войлок, прессованную пробку, пористые камни, различные синтетические материалы (например, пенопласт), изготовленные на основе вспененных полимеров. Звук в таких прослойках быстро затухает.

Жидкости хорошо проводят звук. Рыбы, например, хорошо слышат шаги и голоса на берегу, это известно опытным рыболовам.

Итак, звук распространяется в любой упругой среде - твёрдой, жидкой и газообразной, но не может распространяться в пространстве, где нет вещества.

Колебания источника создают в окружающей его среде упругую волну звуковой частоты. Волна, достигая уха, воздействует на барабанную перепонку, заставляя её колебаться с частотой, соответствующей частоте источника звука. Дрожания барабанной перепонки передаются посредством системы косточек окончаниям слухового нерва, раздражают их и тем вызывают ощущение звука.

Напомним, что в газах и жидкостях могут существовать только продольные упругие волны. Звук в воздухе, например, передаётся продольными волнами, т. е. чередующимися сгущениями и разрежениями воздуха, идущими от источника звука.

Звуковая волна, как и любые другие механические волны, распространяется в пространстве не мгновенно, а с определённой скоростью. В этом можно убедиться, например, наблюдая издалека за стрельбой из ружья. Сначала видим огонь и дым, а потом через некоторое время слышим звук выстрела. Дым появляется в то же время, когда происходит первое звуковое колебание. Измерив промежуток времени t между моментом возникновения звука (момент появления дыма) и моментом, когда он доходит до уха, можно определить скорость распространения звука:

Измерения показывают, что скорость звука в воздухе при 0 °С и нормальном атмосферном давлении равна 332 м/с.

Скорость звука в газах тем больше, чем выше их температура. Например, при 20 °С скорость звука в воздухе равна 343 м/с, при 60 °С - 366 м/с, при 100 °С - 387 м/с. Объясняется это тем, что с повышением температуры возрастает упругость газов, а чем больше упругие силы, возникающие в среде при её деформации, тем больше подвижность частиц и тем быстрее передаются колебания от одной точки к другой.

Скорость звука зависит также от свойств среды, в которой распространяется звук. Например, при 0 °С скорость звука в водороде равна 1284 м/с, а в углекислом газе - 259 м/с, так как молекулы водорода менее массивны и менее инертны.

В настоящее время скорость звука может быть измерена в любой среде.

Молекулы в жидкостях и твёрдых телах расположены ближе друг к другу и сильнее взаимодействуют, чем молекулы газов. Поэтому скорость звука в жидких и твёрдых средах больше, чем в газообразных.

Поскольку звук - это волна, то для определения скорости звука, помимо формулы V = s/t, можно пользоваться известными вам формулами: V = λ/T и V = vλ. При решении задач скорость звука в воздухе обычно считают равной 340 м/с.

Вопросы

  1. С какой целью ставят опыт, изображённый на рисунке 80? Опишите, как этот опыт проводится и какой вывод из него следует.
  2. Может ли звук распространяться в газах, жидкостях, твёрдых телах? Ответы подтвердите примерами.
  3. Какие тела лучше проводят звук - упругие или пористые? Приведите примеры упругих и пористых тел.
  4. Какую волну - продольную или поперечную - представляет собой звук, распространяющийся в воздухе; в воде?
  5. Приведите пример, показывающий, что звуковая волна распространяется не мгновенно, а с определённой скоростью.

Упражнение 30

  1. Может ли звук сильного взрыва на Луне быть слышен на Земле? Ответ обоснуйте.
  2. Если к каждому из концов нити привязать по одной половинке мыльницы, то с помощью такого телефона можно переговариваться даже шёпотом, находясь в разных комнатах. Объясните явление.
  3. Определите скорость звука в воде, если источник, колеблющийся с периодом 0,002 с, возбуждает в воде волны длиной 2,9 м.
  4. Определите длину звуковой волны частотой 725 Гц в воздухе, в воде и в стекле.
  5. По одному концу длинной металлической трубы один раз ударили молотком. Будет ли звук от удара распространяться ко второму концу трубы по металлу; по воздуху внутри трубы? Сколько ударов услышит человек, стоящий у другого конца трубы?
  6. Наблюдатель, стоящий около прямолинейного участка железной дороги, увидел пар над свистком идущего вдали паровоза. Через 2 с после появления пара он услышал звук свистка, а через 34 с паровоз прошёл мимо наблюдателя. Определите скорость движения паровоза.

Звук в воде поглощается в сотни раз меньше, чем в воздухе. Тем не менее слышимость в водной среде значительно хуже, чем в атмосфере. Объясняется это особенностями восприятия звука человеком. В воздухе звук воспринимается двумя путями: передачей колебаний воздуха барабанным перепонкам ушей (воз­душная проводимость) и так называемой костной проводимостью, когда звуковые колебания воспринимаются и передаются в слу­ховой аппарат костями черепа.

В зависимости от типа водолазного снаряжения водолаз вос­принимает звук в воде с преобладанием или воздушной, или кост­ной проводимости. Наличие объемного шлема, заполненного воз­духом, позволяет воспринимать звук путем воздушной проводи­мости. Однако при этом неизбежна значительная потеря зву­ковой энергии в результате отражения звука от поверхности шлема.

При спусках без снаряжения или в снаряжении с облегающим шлемом преобладает костная проводимость.

Особенностью звукового восприятия под водой является также утрата способности определять направление на источник звука. Это связано с тем, что человеческие органы слуха приспособлены к скорости распространения звука в воздухе и определяют на­правление на источник звука благодаря разнице во времени при­хода звукового сигнала и относительному уровню звукового дав­ления, воспринимаемых каждым ухом. Благодаря устройству ушной раковины человек в воздушной среде способен определить, где находится источник звука - спереди или сзади, даже одним ухом. В воде все происходит по-иному. Скорость распространения звука в воде в 4,5 раза больше, чем в воздухе. Поэтому разница во времени приема звукового сигнала каждым ухом становится настолько малой, что определить направления на источник звука становится практически невозможно.

При использовании в составе снаряжения жесткого шлема возможность определения направления на источник звука вообще исключается.

Биологическое воздействие газов на организм человека

Вопрос о биологическом воздействии газов поставлен не случайно и обусловлен тем, что процессы газообмена при дыхании человека в обычных условиях и так называемых гипербарических (т. е. под повышенным давлением) существенно отличаются.

Известно, что обычный атмосферный воздух, .которым мы ды­шим, непригоден для дыхания летчиков в высотных полетах. Ог­раниченное применение он находит и для дыхания водолазов. При спусках на глубины более 60 м он заменяется специальными газо­выми смесям.

Рассмотрим основные свойства газов, которые как в чистом виде, так и в смеси с другими используются для дыхания водо­лазов.

По своему составу воздух является смесью различных газов. Основными составляющими воздуха являются: кислород - 20,9%, азот - 78,1%, углекислый газ - 0,03%. Кроме того, в небольших количествах в воздухе содержатся: аргон, водород, гелий, неон, а также пары воды.

Входящие в состав атмосферы газы по их воздействию на че­ловеческий организм можно разделить на три группы: кислород - постоянно потребляется для "поддержания всех жизненных про­цессов; азот, гелий, аргон и др. - не участвуют в газовом обме­не; углекислый газ - при повышенной концентрации для организ­ма вреден.

Кислород (О2) -бесцветный газ без вкуса и запаха с плот­ностью 1,43 кг/м3. Имеет важнейшее значение для человека как участник всех окислительных процессов в организме. В процессе дыхания кислород в легких соединяется с гемоглобином крови и разносится по всему организму, где непрерывно потребляется клетками и тканями. Перерыв в снабжении или даже уменьшение поступления его к тканям вызывает кислородное голодание, со­провождающееся потерей сознания, а в тяжелых случаях - пре­кращением жизнедеятельности. Такое состояние может наступить при снижении содержания кислорода во вдыхаемом воздухе при нормальном давлении ниже 18,5%. С другой стороны, при увели­чении содержания кислорода во вдыхаемой смеси или при дыха­нии под давлением, сверх допустимого, кислород прояв­ляет токсические свойства - наступает кислородное отрав­ление.

Азот (N) -газ без цвета, запаха и вкуса с плотностью 1,25 кг/м3, является основной частью атмосферного воздуха по объему и массе. В Обычных условиях физиологически нейтрален, не принимает участия в обмене веществ. Однако по мере повыше­ния давления с ростом глубины погружения водолаза азот пере­стает быть нейтральным и на глубинах 60 и более метров прояв­ляет ярко выраженные наркотические свойства.

Углекислый газ (СО2) - бесцветный газ с кислым при­вкусом. Он в 1,5 раза тяжелее воздуха (плотность 1,98 кг/м3), в связи с чем может скапливаться в нижних частях закрытых и плохо вентилируемых помещений.

Углекислый газ образуется в тканях как конечный продукт окислительных процессов. Определенное количество этого газа всегда имеется в организме и участвует в регуляции дыхания, а избыток переносится кровью к легким и удаляется с выдыхаемым воздухом. Количество выделяемого человеком углекислого газа з основном зависит от степени физической нагрузки и функциональ­ного состояния организма. При частом, глубоком дыхании (гипер­вентиляции) содержание углекислого газа в организме снижается, что может привести к остановке дыхания (апноэ) и даже к потере сознания. С другой стороны, увеличение его содержания в дыха­тельной смеси более допустимого приводит к отравлению.

Из других газов, входящих в состав воздуха, наибольшее при­менение у водолазов получил гелий (Не). Это инертный газ без запаха и вкуса. Обладая малой плотностью (около 0,18 кг/м3) и значительно меньшей способностью вызывать наркотическое воздействие при высоких давлениях, он широко используется как заменитель азота для приготовления искусственных дыхательных смесей при спусках на большие глубины.

Однако применение гелия в составе дыхательных смесей при­водит к другим нежелательным явлениям. Его высокая теплопро­водность, а следовательно, повышенная теплоотдача организма требуют повышенной теплозащиты или активного обогрева водо­лазов.

Давление воздуха . Известно, что окружающая нас атмосфера имеет массу и оказывает давление на поверхность земли и все предметы, находящиеся на ней. Измеренное на уровне моря ат­мосферное давление уравновешивается в трубках сечением Г см2 столбиком ртути высотой 760 мм или воды высотой 10,33 м. Если взвесить эту ртуть или воду, их масса будет равна 1,033 кг. Это значит, что "нормальное атмосферное давление равно 1,033 кгс/см2, что в системе СИ эквивалентно 103,3 кПа *.(* В системе СИ единицей давления является паскаль (Па). При необходи-сти пересчета используются соотношения: 1 кгс/см1 = 105 Па = 102 кПа = =* 0,1 МПа.).

Однако в практике водолазных расчетов пользоваться такими точными единицами измерения неудобно. Поэтому за единицу измерения давления принимают давление, численно равное 1 кгс/см2, которое называют технической атмосферой (ат). Одна техническая атмосфера соответствует давлению 10 м водяного столба.

Воздух при повышении давления легко сжимается, уменьшая объем пропорционально давлению. Давление сжатого воздуха измеряется манометрами, которые показывают избыточное дав­ление , т. е. давление сверх атмосферного . Единица избыточного давления обозначается ати. Сумма избыточного и атмосферного давления называется абсолютным давлением (ата).

В обычных земных условиях воздух со всех сторон равномерно давит на человека. Учитывая, что поверхность тела человека в среднем равна 1,7-1,8 м2, сила давления воздуха, приходящаяся на него, составляет 17-18 тыс. кгс (17-18 тс). Однако человек не ощущает этого давления, так как тело его на 70% состоит из практически несжимаемых жидкостей, а во внутренних полостях - легких, среднем ухе и др. - оно уравновешивается противодав­лением находящегося там и сообщающегося с атмосферой воз­духа.

При погружении в воду человек подвергается воздействию избыточного давления, находящегося над ним столба воды, которое увеличивается на 1 ати через каждые 10 м. Изменение дав­ления может вызывать болевые ощущения и обжим, для преду­преждения которых водолазу необходимо подавать воздух для дыхания под давлением, равным абсолютному давлению окружаю­щей среды.

Поскольку водолазам приходится иметь дело со сжатым воз­духом или газовыми смесями, уместно вспомнить основные законы, которым они подчиняются, и привести некоторые формулы, необ­ходимые для практических расчетов.

Воздух, как и другие реальные газы и газовые смеси, с извест­ным приближением подчиняется физическим законам, абсолютно справедливым для идеальных газов.

ВОДОЛАЗНОЕ СНАРЯЖЕНИЕ

Водолазным снаряжением называют комплект ус­тройств и изделий, надеваемых водолазом, для обеспечения жиз­недеятельности и работы в водной среде в течение заданного про­межутка времени.

Водолазное снаряжение отвечает своему назначению, если оно может обеспечить:

дыхание человека при выполнении им работы под водой;

изоляцию и тепловую защиту от воздействия холодной воды;

достаточную подвижность и устойчивое положение под водой;

безопасность при погружении, выходе на поверхность и в про­цессе работы;

надежную связь с поверхностью.

В зависимости от решаемых задач водолазное снаряжение раз­деляется:

по глубине использования - на снаряжение для малых (сред­них) глубин и глубоководное;

по способу обеспечения дыхательной газовой смесью - на ав­тономное и шланговое;

по способу теплозащиты - на снаряжение с пассивной тепло­защитой, электро- и водообогреваемое;

по способу изоляции - на снаряжение с водогазонепроницае-мыми гидрокомбинезонами «сухого» типа и проницаемыми «мок­рого» типа.

Наиболее полное представление о функциональных особенно­стях работы водолазного снаряжения дает его классификация по способу поддержания необходимого для дыхания состава газовой смеси. Здесь различают снаряжение:

вентилируемое;

с открытой схемой дыхания;

с полузамкнутой схемой дыхания;

с замкнутой схемой дыхания.

Передача звука

Не надо думать, что звук передается только через воздух. Он может проходить и через другие вещества – газообразные, жидкие, даже твердые. В воде звук бежит в четыре с лишком раза быстрее, чем в воздухе.

Если вы сомневаетесь, что звук может передаваться через воду, расспросите рабочих, которым приходится бывать в подводных сооружениях: они подтвердят вам, что под водой отчетливо слышны береговые звуки.

А от рыбаков вы узнаете, что рыбы разбегаются при малейшем подозрительном шуме на берегу.

Ученые еще 200 лет назад в точности измерили, с какою скоростью бежит звук под водою. Сделано это было на одном из швейцарских озер – на Женевском. Два физика сели в лодки и разъехались километра на три один от другого. С борта одной лодки свешивался под воду колокол, в который можно было ударять молотком с длинной ручкой. Ручка эта была соединена с приспособлением для зажигания пороха в маленькой мортире, укрепленной на носу лодки: одновременно с ударом в колокол вспыхивал порох, и яркая вспышка видна была далеко кругом. Мог видеть эту вспышку, конечно, и тот физик, который сидел в другой лодке и слушал звук колокола в трубу, спущенную под воду. По запозданию звука в сравнении со вспышкой определялось, сколько секунд бежал звук по воде от одной лодки до другой. Такими опытами найдено было, что звук в воде пробегает около 1 440 м в секунду.

Еще лучше и быстрее передают звук твердые упругие материалы, например, чугун, дерево, кости. Приставьте ухо к торцу длинного деревянного бруса или бревна и попросите товарища ударить палочкой по противоположному концу, вы услышите гулкий звук удара, переданный через всю длину бруса. Если кругом достаточно тихо и не мешают посторонние шумы, то удается даже слышать через брус тиканье часов, приставленных к противоположному концу. Так же хорошо передается звук через железные рельсы или балки, через чугунные трубы, через почву. Приложив ухо к земле, можно расслышать топот лошадиных ног задолго до того, как он донесется по воздуху; а звуки пушечных выстрелов слышны этим способом от таких отдаленных орудий, грохот которых по воздуху совсем не доносится. Так хорошо передают звук упругие твердые материалы; мягкие же ткани, рыхлые, неупругие материалы очень плохо передают через себя звук, – они его «поглощают». Вот почему вешают толстые занавески на дверях, если хотят, чтобы звук не достигал соседней комнаты. Ковры, мягкая мебель, платье действуют на звук подобным же образом.

Данный текст является ознакомительным фрагментом. Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Физика на каждом шагу автора Перельман Яков Исидорович

Скорость звука Случалось ли вам наблюдать издали за дровосеком, рубящим дерево? Или, быть может, вы следили за тем, как вдали работает плотник, вколачивая гвозди? Вы могли заметить при этом очень странную вещь: удар раздается не тогда, когда топор врезается в дерево или

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Сила звука Как ослабевает звук с расстоянием? Физик ответит вам, что звук ослабевает «обратно пропорционально квадрату расстояния». Это означает следующее: чтобы звук колокольчика на тройном расстоянии был слышен так же громко, как на одинарном, нужно одновременно

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

Скорость звука Не надо бояться грома после того, как сверкнула молния. Вы, наверное, слыхали об этом. А почему? Дело в том, что свет распространяется несравненно быстрее, чем звук, – практически мгновенно. Гром и молния происходят в один и тот же момент, но молнию мы видим в

Из книги Для юных физиков [Опыты и развлечения] автора Перельман Яков Исидорович

Тембр звука Вы видели, как настраивают гитару – струну натягивают на колки. Если длина струны и степень натяжения подобраны, то струна будет издавать, если ее тронуть, вполне определенный тон.Если, однако, вы послушаете звук струны, трогая ее в различных местах –

Из книги О чем рассказывает свет автора Суворов Сергей Георгиевич

Энергия звука Все частицы воздуха, окружающего звучащее тело, находятся в состоянии колебания. Как мы выяснили в главе V, колеблющаяся по закону синуса материальная точка обладает определенной и неизменной полной энергией.Когда колеблющаяся точка проходит положение

Из книги Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей автора Дмитриев Александр Станиславович

Ослабление звука с расстоянием От звучащего инструмента звуковая волна распространяется, конечно, во все стороны.Проведем мысленно около источника звука две сферы разных радиусов. Разумеется, энергия звука, проходящая через первую сферу, пройдет и через вторую шаровую

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

Отражение звука В этом параграфе мы будем предполагать, что длина звуковой волны достаточно мала и, следовательно, звук распространяется по лучам. Что происходит, когда такой звуковой луч падает из воздуха на твердую поверхность? Ясно, что при этом происходит отражение

Из книги автора

ОТКРЫТИЕ НЕОЖИДАННЫХ СВОЙСТВ АТМОСФЕРЫ - СТРАННЫЕ ЭКСПЕРИМЕНТЫ - ПЕРЕДАЧА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ПО ОДНОМУ ПРОВОДУ БЕЗ ВОЗВРАТНОГО - ПЕРЕДАЧА ЧЕРЕЗ ЗЕМЛЮ ВООБЩЕ БЕЗ ПРОВОДОВ Другая из этих причин в том, что я пришел к осознанию того, что передача электрической энергии

Из книги автора

ПЕРЕДАЧА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ БЕЗ ПРОВОДОВ* К концу 1898 систематические исследования, проводившиеся много лет с целью усовершенствования метода передачи электрической энергии через естественную среду, привели меня к пониманию трех важных потребностей; Первая -

Из книги автора

Из книги автора

Передача звука по радио Ламповый генератор, схема которого представлена на рис. 24, генерирует радиоизлучения с неизменными параметрами. Сделаем к нему небольшое дополнение: к контуру, подающему напряжение на сетку электронной лампы, присоединим через индукционную

Из книги автора

48 Передача энергии через вещество Для опыта нам потребуется: десяток монеток по рублю. Мы уже встречались с разными волнами. Вот еще один старинный опыт, который довольно забавно смотрится и показывает, как волна проходит через предмет.Возьмите мелочь – монеты, например

Из книги автора

30. Передача сообщений в прошлое Набор правил для зрителя Еще до того, как Кристофер Нолан стал режиссером «Интерстеллар» и переработал сценарий, его брат Джона рассказал мне про набор правил.Чтобы поддерживать в научно-фантастическом фильме нужный уровень

Из книги автора

Глава 30. Передача сообщений в прошлое Относительно того, как современные физики представляют себе путешествие назад во времени в четырех пространственно-временных измерениях без балка, см. последнюю главу книги «Черные дыры и складки времени» [Торн 2009], главы,

Из книги автора

Глава 30. Передача сообщений в прошлое В балке, так же как и в нашей бране, положения в пространстве – времени, в которые можно передавать сообщения и вообще что-либо перемещать, ограничены законом, который гласит: ничто не может двигаться быстрее света. Чтобы изучить

Где звук распространяется быстрее: в воздухе или в воде??? и получил лучший ответ

Ответ от Ptishon[гуру]
Скорость звукаСкорость звука в газах (0° С; 101325 Па), м/с Азот 334 Аммиак 415 Ацетилен 327 Водород 1284 Воздух 331,46 Гелий 965 Кислород 316 Метан 430 Угарный газ 338 Углекислый газ 259 Хлор 206 Скорость звука - скорость распространения звуковых волн в среде.В газах скорость звука меньше, чем в жидкостях.В жидкостях скорость звука меньше, чем в твёрдых телах.В воздухе при нормальных условиях скорость звука составляет 331.46 м/с (1193 км/ч).В воде скорость звука составляет 1485 м/с.В твёрдых телах скорость звука составляет 2000-6000 м/с.

Ответ от White Rabbit [гуру]
В воде.В воздухе скорость звука при 25оС около 330 м/cа в воде около 1500 м/сТочное значение зависит от температуры, давления, солёности (для воды) и влажности (для воздуха)


Ответ от BaNkS777 [эксперт]
в воде....


Ответ от АнДи [гуру]
а ты что звуковую бомбу создать хочешь?вот физико-ядерщиков понавелосьФ)))


Ответ от Владимир Т [гуру]
в воде, где плотность больше там и быстрее (молекули ближе и передача быстрее)


Ответ от Полина Лыкова [активный]
Наверное в воздухе (точно не знаю).Так как в воде все движения замдляются, то и звук не так быстро распрастраняется!Ну проверь! Хлопни в ладоши под водой. Это будет сделанно медленее, чем в воздухе.Мой опыт =) =8 =(=*8 =Р


Ответ от 3 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Где звук распространяется быстрее: в воздухе или в воде???