Хеморецепторы дыхания. Лекция на тему — «Регуляция дыхания

  • Дата: 03.03.2020

text_fields

text_fields

arrow_upward

Основное назначение регуляции внешнего дыхания заключается в поддержании оптималь­ ного газового состава артериальной крови - напряжения О 2 , на­пряжения СО 2 и, тем самым, в значительной мере - концентрации водородных ионов .

У человека относительное постоянство напряже­ния О 2 и СО 2 артериальной крови сохраняется даже при физической работе, когда потребление О 2 и образование СО 2 возрастает в не­сколько раз. Это возможно потому, что при работе вентиляция легких увеличивается пропорционально интенсивности метаболичес­ких процессов. Избыток СО 2 и недостаток О 2 во вдыхаемом воздухе также вызывает увеличение объемной скорости дыхания, благодаря чему парциальное давление О 2 и СО 2 в альвеолах и в артериальной крови почти не изменяется.

Особое место в гуморальной регуляции деятельности дыхательного центра имеет изменение в крови напряжения СО 2 . При вдыхании газовой смеси, содержащей 5-7% СО 2 , увеличение парциального давления СО 2 в альвеолярном воздухе задерживает выведение СО 2 из венозной крови. Связанное с этим повышение напряжения СО 2 в артериальной крови приводит к увеличению легочной вентиляции в 6-8 раз. Благодаря такому значительному увеличению объема дыха­ния, концентрация СО 2 в альвеолярном воздухе возрастает не более, чем на 1%. Увеличение содержания СО 2 в альвеолах на 0.2% вы­зывает увеличение вентиляции легких на 100%. Роль СО 2 как глав­ного регулятора дыхания, выявляется и в том, что недостаток со­держания СО 2 в крови понижает деятельность дыхательного центра и приводит к уменьшению объема дыхания и даже к полному пре­кращению дыхательных движения (апное). Это происходит, напри­мер, при искусственной гипервентиляции: произвольное увеличение глубины и частоты дыхания приводит к гипокапнии - снижению парциального давления СО 2 в альвеолярном воздухе и артериальной крови. Поэтому после прекращения гипервентиляции появление очередного вдоха задерживается, а глубина и частота последующих вдохов вначале снижается.

Указанные изменения газового состава внутренней среды орга­низма оказывают влияние на дыхательный центр опосредованно, через специальные хемочувствителъные рецепторы , расположенные непосредственно в структурах продолговатого мозга («центральные хеморецепторы« ) и в сосудистых рефлексогенных зонах перифери­ческие хеморецепторы «) .

Регуляции дыхания Центральными (медуллярными) хеморецепторами

text_fields

text_fields

arrow_upward

Центральными (медуллярными) хеморецепторами, постоянно участву­ющими в регуляции дыхания, называют нейрональные структуры в продолговатом мозге, чувствительные к напряжению СО 2 и кислотно-щелочному состоянию омывающей их межклеточной мозговой жид­кости. Хемочувствительные зоны имеются на переднебоковой поверх­ности продолговатого мозга около выходов подъязычного и блужда­ющего нервов в тонком слое мозгового вещества на глубине 0.2-0.4 мм. Медуллярные хеморецепторы постоянно стимулируются ионами водорода в межклеточной жидкости ствола мозга, концентрация кото­рых зависит от напряжения СО 2 в артериальной крови. Спинномоз­говая жидкость отделена от крови гемато-энцефалическим барьером, относительно непроницаемым для ионов Н + и НСО 3 , но свободно пропускающим молекулярный СО 2 . При повышении напряжения СО 2 в крови он диффундирует из кровеносных сосудов головного мозга в спинномозговую жидкость, в результате чего, в ней накапливаются ионы Н + , которые стимулируют медуллярные хеморецепторы. При повышении напряжения СО 2 и концентрации водородных ионов в жидкости, омывающей медуллярные хеморецепторы, увеличивается активность инспираторных и падает активность экспираторных нейро­нов дыхательного центра продолговатого мозга. В результате этого, дыхание становится более глубоким и вентиляция легких растет, глав­ным образом, за счет увеличения объема каждого вдоха. Напротив, снижение напряжения СО 2 и подщелачивание межклеточной жидкости ведет к полному или частичному исчезновению реакции увеличения объема дыхания на избыток СО 2 (гиперкапнию) и ацидоз, а также к резкому угнетению инспираторной активности дыхательного центра вплоть до остановки дыхания.

Регуляции дыхания Периферическими хеморецепторами

text_fields

text_fields

arrow_upward

Периферические хеморецепторы, воспринимающие газовый состав артериальной крови, расположены в двух областях:

1) Дуге аорты,

2) Месте деления (бифуркация) общей сонной артерии (каротидный си­ нус),

т.е. в тех же зонах, что и барорецепторы, реагирующие на изменения кровяного давления. Однако, хеморецепторы представля­ют собой самостоятельные образования, заключенные в особых тель­цах - клубочках или гломусах, которые находятся вне сосуда. Аффе­рентные волокна от хеморецепторов идут: от дуги аорты - в со­ставе аортальной ветви блуждающего нерва, а от синуса сонной артерии - в каротидной ветви языкоглоточного нерва, так называ­емом нерве Геринга. Первичные афференты синусного и аортально­го нерва проходят через ипсилатеральное ядро солитарного тракта. Отсюда хеморецептивные импульсы поступают к дорсальной группе дыхательных нейронов продолговатого мозга.

Артериальные хеморецепторы вызывают рефлекторное увеличение легочной вентиляции в ответ на снижение напряжения кислорода в крови (гипоксемию). Даже в обычных (нормоксических) условиях эти рецепторы находятся в состоянии постоянного возбуждения, которое исчезает только при вдыхании человеком чистого кислорода. Умень­шение напряжения кислорода в артериальной крови ниже нормаль­ного уровня вызывает усиление афферентации из аортальных и синокаротидных хеморецепторов.

Хеморецепторы каротидного синуса . Вдыхание гипоксической смеси ведет к учащению и увеличению регулярности импульсов, посыла­емых хеморецепторами каротидного тельца. Повышению напряжения СО 2 артериальной крови и соответству­ющему подъему вентиляции также сопутствует рост импульсной активности, направляемой в дыхательный центр от хеморецепторов каротидного синуса. Особенность роли, которую играют артериаль­ные хеморецепторы в контроле за напряжением углекислоты, состо­ит в том, что они ответственны за начальную, быструю, фазу вен­тиляторной реакции на гиперкапнию. При их денервации указанная реакция наступает позднее и оказывается более вялой, так как развивается в этих условиях лишь после того, как повысится на­пряжение СО 2 области хемочувствительных мозговых структур.

Гиперкапническая стимуляция артериальных хеморецепторов, по­добно гипоксической, носит постоянный характер. Эта стимуляция начинается при пороговом напряжении СО 2 20-30 мм рт.ст и, сле­довательно, имеет место уже в условиях нормального напряжения СО 2 в артериальной крови (около 40 мм рт.ст.).

Взаимодей­ствие гуморальных стимулов дыхания

text_fields

text_fields

arrow_upward

Важным моментом для регуляции дыхания является взаимодей­ствие гуморальных стимулов дыхания. Оно проявляется, например, в том, что на фоне повышенного артериального напряжения СО 2 или увеличенной концентрации водородных ионов вентиляторная ре­акция на гипоксемию становится интенсивнее. Поэтому снижение парциального давления кислорода и одновременное повышение пар­циального давления углекислого газа в альвеолярном воздухе вызы­вают нарастание легочной вентиляции, превышающее арифметичес­кую сумму ответов, которые вызывают эти факторы, действуя по­рознь. Физиологическое значение этого явления заключается в том, что указанное сочетание стимуляторов дыхания имеет место при мышечной деятельности, которая сопряжена с максимальным подъ­емом газообмена и требует адекватного ему усиления работы дыха­тельного аппарата.

Установлено, что гипоксемия снижает порог и увеличивает ин­тенсивность вентиляторной реакции на СО 2 . Однако, у человека при недостатке кислорода во вдыхаемом воздухе увеличение вентиляции происходит лишь при условии, когда артериальное напряжение СО 2 составляет не менее 30 мм рт.ст. При уменьшении парциального давления О 2 во вдыхаемом воздухе (например, при дыхании газовы­ми смесями с низким содержанием О 2 , при пониженном атмосфер­ном давлении в барокамере или в горах) возникает гипервентиля­ция, направленная на предупреждение значительного снижения пар­циального давления О 2 в альвеолах и напряжения его в артеальной крови. При этом из-за гипервентиляции наступает снижение пар­циального давления СО 2 в альвеолярном воздухе и развивается гипокапния, приводящая к уменьшению возбудимости дыхательного центра. Поэтому при гипоксической гипоксии, когда парциальное давление СО 2 во вдыхаемом воздухе снижается до 12 кПа (90 мм рт.ст.) и ниже, система регуляции дыхания может лишь частично обеспечить поддержание напряжения О 2 и СО 2 на должном уровне. В этих условиях, несмотря на гипервентиляцию, напряжение О 2 все же снижается, и возникает умеренная гипоксемия.

В регуляции дыхания функции центральных и периферических рецепторов постоянно дополняют друг друга и, в общем, проявляют синергизм. Так, импульсация хеморецепторов каротидного тельца усиливает эффект стимуляции медуллярных хемочувствительных структур. Взаимодействие центральных и периферических хеморе­цепторов имеет жизненно важное значение для организма, напри­мер, в условиях дефицита О 2 . При гипоксии из-за снижения окис­лительного метаболизма в мозге чувствительность медуллярных хе­морецепторов ослабевает или исчезает, вследствие чего снижается активность дыхательных нейронов. Дыхательный центр в этих усло­виях получает интенсивную стимуляцию от артериальных хеморе­цепторов, для которых гипоксемия является адекватным раздражи­телем. Таким образом, артериальные хеморецепторы служат «ава­рийным» механизмом реакции дыхания на изменение газового со­става крови, и, прежде всего, на дефицит кислородного снабжения мозга.

Оглавление темы "Дыхательный центр. Дыхательный ритм. Рефлекторная регуляция дыхания.":
1. Дыхательный центр. Что такое дыхательный центр? Где находится дыхательный центр? Комплекс Бетзингера.
2. Дыхательный ритм. Происхождение дыхательного ритма. Пребетзингерова область.
3. Пневмотаксический центр. Влияние моста на дыхательный ритм. Апнейстический центр. Апнейзис. Функция спинальных дыхательных мотонейронов.
4. Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические (артериальные) хеморецепторы.
5. Механорецепторы. Механорецепторный контроль дыхания. Рецепторы легких. Рецепторы реулирующие дыхание.
6. Дыхание при физической нагрузке. Нейрогенные стимулы дыхания. Влияние на дыхание физической нагрузки низкой и средней интенсивности.
7. Влияние на дыхание физической нагрузки высокой интенсивности. Энергетическая стоимость дыхания.
8. Дыхание человека при измененном барометрическом давлении воздуха. Дыхание при пониженном давлении воздуха.
9. Горная болезнь. Причины (этиология) горной болезни. Механизм развития (патогенез) горной болезни.
10. Дыхание человека при повышенном давлении воздуха. Дыхание при высоком атмосферном давлении. Кесонная болезнь. Газовая эмболия.

Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические (артериальные) хеморецепторы.

Хеморецепторный контроль дыхания осуществляется при участии центральных и периферических хеморецепторов . Центральные (медуллярные ) хеморецепторы расположены непосредственно в в ростральных отделах вентральной дыхательной группы, в структурах голубого пятна (locus coeruleus), в ретикулярных ядрах шва ствола мозга и реагируют на водородные ионы в окружающей их межклеточной жидкости мозга (рис. 10.23). Центральные хеморецепторы представляют собой нейроны, которые в определенной степени являются рецепторами углекислого газа, поскольку величина рН обусловлена парциальным давлением С02, согласно уравнению Гендерсона-Гасельбаха , а также тем, что концентрация ионов водорода в межклеточной жидкости мозга зависит от парциального давления углекислого газа в артериальной крови.

Рис. 10.23. Зависимость вентиляции легких от степени стимуляции центральных хеморецепторов изменениями [Н+]/РС02 в артериальной крови. Увеличение парциального давления С02 в артериальной крови выше порога (РС02 = 40 мм рт. ст.) линейно увеличивает объем вентиляции легких.

Увеличение вентиляции легких при стимуляции центральных хеморецепторов ионами водорода называется центральным хеморефлексом , который оказывает выраженное влияние на дыхание. Так, в ответ на уменьшение рН внеклеточной жидкости мозга в области локализации рецепторов на 0,01 легочная вентиляция возрастает в среднем на 4,0 л/мин. Однако центральные хеморецепторы медленно реагируют на изменения С02 в артериальной крови, что обусловлено их локализацией в ткани мозга. У человека центральные хеморецепторы стимулируют линейное увеличение вентиляции легких при увеличении С02 в артериальной крови выше порог, равного 40 мм рт. ст.

Периферические (артериальные ) хеморецепторы расположены в каротидных тельцах в области бифуркации общих сонных артерий и в аортальных тельцах в области дуги аорты. Периферические хеморецепторы реагируют как на изменение концентрации водородных ионов, так и парциального давления кислорода в артериальной крови. Рецепторы чувствительны к анаэробным метаболитам, которые образуются в ткани каротидных телец при недостатке кислорода. Недостаток кислорода в тканях каротидных телец может возникнуть, например, при гиповентиляции, ведущей к гипоксии, а также при гипо-тензии, вызывающей снижение кровотока в сосудах каротидных телец. При гипоксии (низкое парциальное давление кислорода) периферические хеморецепторы активируются под влиянием увеличения концентрации в артериальной крови, прежде всего, ионов водорода и РС02.


Рис. 10.24. Зависимость вентиляции легких от степени стимуляции периферических хеморецепторов гипоксическим стимулом . При стимуляции периферических хеморецепторов гипоксией имеет место мультипликативное взаимодействие парциального давления С02 в артериальной крови и гипоксии, в результате которого происходит максимальное увеличение вентиляции легких. Напротив, при высоком Парциальном давлении кислорода в артериальной крови периферические хеморецепторы слабо реагируют на увеличение РС02. Если в артериальной крови парциальное давление С02 становится ниже порога (40 мм рт.ст.), то периферические хеморецепторы также слабо реагируют на гипоксию.

Действие на периферические хеморецепторы этих раздражителей усиливается по мере снижения в крови Р02 (мультипликативное взаимодействие). Гипоксия увеличивает чувствительность периферических хеморецепторов к [Н+] и С02. Это состояние называется асфиксией и возникает при прекращении вентиляции легких. Поэтому периферические хеморецепторы называются часто рецепторами асфиксии. Импульсы от периферических хеморецепторов по волокнам синокаротидного нерва (нерв Геринга - часть языкоглоточного нерва) и аортальной ветви блуждающего нерва достигают чувствительных нейронов ядра одиночного тракта продолговатого мозга, а затем переключаются на нейроны дыхательного центра. Возбуждение последнего вызывают прирост вентиляции легких. Вентиляция легких увеличивается линейно в соответствии с величиной [Н+] и РС02 выше порога (40 мм рт. ст.) в артериальной крови, протекающей через каротидные и аортальные тельца (рис. 10.24). Наклон кривой на рисунке, который отражает чувствительность периферических хеморецепторов к [Н+] и РС02, варьирует в зависимости от степени гипоксии.

Напряжение в артериальной крови О 2 и СО 2 , а также рН, как уже известно, зависит от вентиляции легких.

Но, в свою очередь, они являются факторами, влияющими на интенсивность этой вентиляции, то есть они влияют на деятельность ДЦ.

Опыт Фредерико с перекрестным кровообращением. У двух собак соединяли перекрестно сонные артерии с яремными венами при перевязанных позвоночных артериях. В результате голова первой собаки снабжалась кровью второй собаки, а голова второй собаки - кровью первой. Если у первой собаки пережать трахею (вызвать ас-фиксию), то у второй собаки наступало гиперпноэ. У первой собаки, несмотря на повышение рСО 2 и понижение рО 2, возникает апноэ.

Причина: в сонную артерию первой собаки поступала кровь второй собаки, у которой в результате гипервентиляции, в крови понижалось рСО 2 . Это влияние осуществляется не непосредственно на его нейроны, а через посредство специальных хеморецепторов, распо-ложенных:

1. В центральных структурах (центральные, медулярные, бульбар-ные хеморецепторы).

2. На периферии (артериальные хеморецепторы).

От этих рецепторов в дыхательный центр поступает афферентная сигнализация о газовом составе крови.

Таким образом образуются своеобразные регуляторные цепи с обратной связью, деятельность которых направлена на поддержание гемостаза, соответствия дыхательной функции метаболическим пот-ребностям организма.

Роль центральных хеморецепторов . Центральные хемореце-пторы располагаются в ПМ. Перфузия участка ПМ в области расположения данных рецепторов раствором с пониженным рН приводит к резкому усилению дыхания, а с повы-шением рН - к ослаблению дыхания.

Обнаружены 2 рецепторных поля в ПМ. Их обозначили буквами М и L. Между ними находится большое поле S. Нейроны данного поля нечувствительны к рН. Разрушение поля S приводит к потере чувствительности полей М и L к рН. Полагают, что здесь проходят аф-ферентные пути от хеморецепторов к ДЦ.

В естественных условиях центральные хеморецепторы постоянно стимулируются Н + , содержащимися в межклеточной жидкости ство-ла мозга, которая весьма схожа по составу со спинно-мозговой жидкостью. Концентрация Н + в ней находится в зависимости от напряжения СО 2 в артериальной крови. Снижение рН на 0,01 вызывает увеличение вентиляции легких на 4 л/мин.

Вместе с тем, центральные хеморецепторы реагируют и на изменения рСО 2 , но в меньшей степени, чем изменения рН. Пола-гают, что основным химическим фактором, влияющим на цент-ральные хеморецепторы является содержание Н + в межклеточной жидкости ствола мозга, а действие СО 2 связано с образованием этих ионов.

Роль артериальных хеморецепторов. О 2 , СО 2 и Н + могут дей-ствовать на структуры НС не только центрально, непосредственно, но и путем возбуждения периферических хеморецепторов.



Наиболее важными из них является:

1. Параганглии, расположенные у места деления общей сонной артерии на внутреннюю и наружную, называемые каротидными тельцами (иннервируются веточками языкоглоточного нерва).

2. Параганглии дуги аорты, так называемые аортальные тельца (иннервируются волокнами п.vagus).

Хеморецепторы указанных зон, возбуждаются при повышении рСО 2 и понижении рО 2 и рН. Это можно показать путем перфузии указанных участков артерий кровью, изменяя ее параметры рО 2 , рСО 2 , рН, регистрируя при этом изменения биоэлектрической активности афферентных волокон. Показано, что влияние О 2 на дыхательный центр опосредовано исключительно периферическими хеморецеп-торами.

Что касается СО 2 и Н + , то они обладают преимущественно центральным действием, хотя при сдвигах рСО 2 и рН импульсация от хеморецепторов изменяется, но незначительно, что свидетельствует об относительно небольшом влиянии этих факторов на ДЦ опоследо-ванном периферическими хеморецепторами.

Таким образом, нейроны ДЦ поддерживаются в состоянии активности импульсами, поступающими от центральных (бульбар-ных) и периферических (артериальных) хеморецепторов, реагирующих на изменение 3-х параметров артериальной крови:

1. Снижение рО 2 (гипоксемию);

2. Повышение рСО 2 (гиперкапнию);

3. Снижению рН (ацидоз).

Главным стимулом дыхания является гиперкапнический. Чем выше рСО 2 (а с ним связана и рН) в артериальной крови и межкле-точной жидкости, тем выше возбуждение бульбарных хемочувстви-тельных структур и артериальных хеморецепторов, тем выше вентиляция легких.



Меньшее значение в регуляции дыхания имеет гипоксический стимул (крутизна падения рО 2 в крови наступает лишь тогда, когда рО 2 снижается ниже 60-70 мм Hg).

Но особенно сильным стимулом центрального дыхательного механизма является сочетанное действие гипоксемии и гиперкап-нии(и связанным с ним ацидозом). Это вполне понятно: усиление окислительных процессов в организме сопряжено:

· с повышением поглощения О 2 ;

· с повышением образования СО 2 ;

· с повышением образования кислых продуктов обмена.

Это требует увеличения объема вентиляции легких.

Контроль за нормальным содержанием во внутренней среде организма О 2 , СО 2 и рН осуществляется периферическими и центральными хеморецепторами . Адекватным раздражителем для периферических хеморецепторов является уменьшение напряжение О 2 артериальной крови, но в большей степени увеличение напряжение СО 2 и уменьшение рН, а для центральных хеморецепторов – увеличение концентрации Н + во внеклеточной жидкости мозга и напряжения СО 2.

Периферические (артериальные) хеморецепторы находятся в основном в каротидных тельцах, расположенных в области бифуркации общих сонных артерий, и аортальных тельцах, находящихся в верхней и нижней частях дуги аорты. Сигналы от хеморецепторов аорты поступают по аортальной ветви блуждающего нерва, а от хеморецепторов каротидного синуса - по каротидной ветви языкоглоточного нерва (нерв Геринга) к дорсальной группе дыхательных нейронов продолговатого мозга. Более важную роль в возбуждении ДЦ играют хеморецепторы каротидного синуса.

Центральные (медуллярные) хеморецепторы чувствительны к изменению концентрации Н + межклеточной мозговой жидкости. Они постоянно стимулируются Н + , концентрация которых зависит от напряжения СО 2 в крови. При увеличении ионов Н + и напряжения СО 2 увеличивается активность нейронов ДЦ продолговатого мозга, растет вентиляция легких, и дыхание становится более глубоким. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз тормозят центральные хеморецепторы. Центральные хеморецепторы позднее реагируют на изменения газов крови, но возбудившись, обеспечивают прирост вентиляции на 60-80 %.

Отклонения, вызванные изменениями обмена веществ или состава дыхательного воздуха, приводят к изменению активности дыхательных мышц и альвеолярной вентиляции, возвращая значения напряжения О 2 , СО 2 и рН к их должному уровню (приспособительная реакция) (рис.15).

Рис.15. Роль хеморецепторов в регуляции дыхания.

Таким образом, главная цель регуляции дыхания состоит в том, чтобы легочная вентиляция соответствовала метаболическим потребностям организма. Так, при физической нагрузке требуется больше кислорода, соответственно должен возрасти объем дыхания.

Дыхательные нейроны продолговатого мозга

Дыхательный центр (ДЦ) – совокупность нейронов специфических (дыхательных) ядер продолговатого мозга, способных генерировать дыхательный ритм. В продолговатом мозге имеется 2 скопления дыхательных нейронов: одно из них находится в дорсальной части, недалеко от одиночного ядра – дорсальная дыхательная группа (ДДГ), другое расположено вентральнее, вблизи от двойного ядра – вентральная дыхательная группа (ВДГ), где локализованы центры вдоха и выдоха.

В дорсальном ядре были обнаружены два класса нейронов: инспираторные нейроны типа Iα и Iβ. При акте вдоха возбуждаются оба класса этих нейронов, но выполняют разные задачи:

Инспираторные Iα-нейроны активируют α-мотонейроны диафрагмальной мышцы, и, одновременно, посылают сигналы к инспираторным нейронам вентрального дыхательного ядра, которые в свою очередь, возбуждают α-мотонейроны скелетных дыхательных мышц;

Инспираторные Iβ-нейроны, возможно с помощью вставочных нейронов, запускают процесс торможения Iα-нейронов.

В вентральном ядре были обнаружены два типа нейронов – инспираторные (от них возбуждение идет к альфа-мотонейронам скелетной дыхательной мускулатуры) и экспираторные (активируют экспираторные скелетные мышцы). Среди них были выделены следующие виды нейронов:

1. «ранние» инспираторные – активны в начале фазы вдоха (инспирации);

2. «поздние» инспираторные –активны в конце вдоха;

3. «полные» инспираторные – активны в течение всего вдоха;

4. постинспираторные – максимальный разряд в начале выдоха;

5. экспираторные – активны во вторую фазу выдоха;

6. преинспираторные – активны перед вдохом. Они выключают активную экспирацию (выдох).

Нейроны экспираторного и инспираторного отделов дыхательного центра функционально неоднородны, контролируют разные фазы дыхательного цикла и работают ритмически.

Рo 2 и Рсо 2 в артериальной крови че­ловека и животных поддерживается на достаточно стабильном уров­не, несмотря на значительные изменения потребления О 2 и выде­ление СО 2 . Гипоксия и понижение рН крови (ацидоз) вызывают усиление вентиляции (гипервентиляция), а гипероксия и повышение рН крови (алкалоз) - понижение вентиляции (гиповентиляция) или апноэ. Контроль за нормальным содержанием во внутренней среде организма О 2 , СО 2 и рН осуществляется периферическими и центральными хеморецепторами.

Артериальные (периферические) хеморецепторы. Периферические хеморецепторы находятся в каротидных и аортальных тельцах. Каротидные тельца состоят из скопления клеток I типа (рис. 25) . Эти клетки окутаны глиаподобными клетками II типа и имеют контакт с открытыми капиллярами. Гипоксия приводит к деполяризации мембраны клеток I типа (механизм возникновения возбуждения пока недостаточно изучен). Сигналы от артериальных хеморецепторов по синокаротидным и аортальным нервам первоначально поступают к нейронам ядра одиночного пучка продолговатого мозга, а затем переключаются на нейроны дыхательного центра. Уникальной особенностью периферических хеморецепторов является их высокая чувствительность к уменьшению Ро 2 артериальной крови, в меньшей степени они реагируют на увеличение Рco 2 и рН.

Рис. 25. Каротидный (сонный) синус и каротидное (сонное) тельце

А. КаротидныйсинусБ. Клубочеккаротидноготельца

Недостаток О 2 в артериальной крови является основным раздражи­телем периферических хеморецепторов. Импульсная активность в афферентных волокнах синокаротидного нерва прекращается при Рао 2 выше 400 мм рт.ст. (53,2 кПа). При нормоксии частота разрядов синокаротидного нерва составляет 10% от их максимальной реакции, которая наблюдается при Раo 2 около 50 мм рт.ст. и ниже. Гипоксическая реакция дыхания практически отсутствует у корен­ных жителей высокогорья и исчезает примерно через 5 лет у жителей равнин после начала их апаптации к высокогорью (3500 м и выше).

Центральные хеморецепторы. Окончательно не уста­новлено местоположение центральных хеморецепторов. Исследова­тели считают, что такие хеморецепторы находятся в ростральных отделах продолговатого мозга вблизи его вентральной поверхности, а также в различных зонах дорсального дыхательного ядра.

Адекватным раздражителем для центральных хеморецепторов является изменение концентрации Н + во внеклеточной жидкости мозга. Функцию регулятора пороговых сдвигов рН в области цен­тральных хеморецепторов выполняют структуры гематоэнцефалического барьера, который отделяет кровь от внеклеточной жидкости мозга. Через этот барьер осуществляется транспорт О 2 , СО 2 и Н + между кровью и внеклеточной жидкостью мозга. Поскольку проницаемость барьера для CO 2 велика (в отличие от H + и HCO – 3), а CO 2 легко диффундирует через клеточные мембраны, отсюда следует, что кнутри от барьера (в интерстициальной жидкости, в ликворе, в цитоплазме клеток) наблюдается относительный ацидоз (сравнительно с кровью кнаружи от барьера) и что увеличение Pco 2 приводит к большему уменьшению значения pH, чем в крови. Другими словами, в условиях ацидоза возрастает хемочувствительность нейронов к рco 2 и pH. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз тормозят центральные хеморецепторы.


Контрольные вопросы

1. Где расположены периферические хеморецепторы?

2. Что является основным стимулятором периферических хеморецепторов?

3. Где расположены центральные хеморецепторы?

4. Что является основным стимулятором центральных хеморецепторов?