Гравитационные волны что могут дать. Вопрос об объединении квантовой теории и теории гравитации – один из фундаментальных вопросов создания единой теории поля

  • Дата: 22.09.2019

В четверг, 11 февраля, группа ученых из международного проекта LIGO Scientific Collaboration заявили, что им удалось , существование которых еще в 1916 году предсказал Альберт Эйнштейн. По утверждению исследователей, 14 сентября 2015 года они зафиксировали гравитационную волну, которая была вызвана столкновением двух черных дыр массой в 29 и 36 раз больше массы Солнца, после чего они слились в одну большую черную дыру. По их словам, это произошло предположительно 1,3 миллиарда лет назад на расстоянии 410 Мегапарсеков от нашей галактики.

Подробно о гравитационных волнах и масштабном открытии ЛІГА.net рассказал Богдан Гнатык , украинский ученый, астрофизик, доктор физико-математических наук, ведущий научный сотрудник Астрономической обсерватории Киевского национального университета имени Тараса Шевченко, который возглавлял обсерваторию с 2001-го по 2004 год.

Теория простым языком

Физика изучает взаимодействие между телами. Установлено, что между телами существует четыре вида взаимодействия: электромагнитное, сильное и слабое ядерное взаимодействие и гравитационное взаимодействие, которое мы все ощущаем. Вследствие гравитационного взаимодействия планеты вращаются вокруг Солнца, тела имеют вес и падают на землю. С гравитационным взаимодействием человек сталкивается постоянно.

В 1916 году, 100 лет назад, Альберт Эйнштейн построил теорию гравитации, которая улучшала ньютоновскую теорию гравитации, сделала ее математически правильной: она стала отвечать всем требованиям физики, стала учитывать то, что гравитация распространяется с очень большой, но конечной скоростью. Это по праву одно из самых грандиозных достижений Эйнштейна, поскольку он построил ​​теорию гравитации, которая отвечает всем явлениям физики, которые мы сегодня наблюдаем.

Эта теория также предполагала существование гравитационных волн . Основой этого предсказания было то, что гравитационные волны существуют в результате гравитационного взаимодействия, которое возникает вследствие слияния двух массивных тел.

Что такое гравитационная волна

Сложным языком это возбуждение метрики пространства-времени. "Скажем, пространство имеет определенную упругость и по нему могут бежать волны. Это похоже на то, когда мы в воду бросаем камешек и от него разбегаются волны", - рассказал ЛІГА.net доктор физико-математических наук.

Ученым удалось экспериментально доказать, что подобное колебание имело место во Вселенной и во всех направлениях пробежала гравитационная волна. "Астрофизическим способом впервые было зафиксировано явление такой катастрофической эволюции двойной системы, когда сливаются два объекта в один, а это слияние приводит к очень интенсивному выделению гравитационной энергии, которая затем в виде гравитационных волн распространяется в пространстве", - пояснил ученый.


Как это выглядит (фото - EPA)

Эти гравитационные волны очень слабые и чтобы они поколебали пространство-время, необходимо взаимодействие очень больших и массивных тел, чтобы напряженность гравитационного поля была большая в месте генерирования. Но, несмотря на их слабость, наблюдатель через определенное время (равное расстоянию к взаимодействию разделенному на скорость прохождения сигнала) зарегистрирует эту гравитационную волну.

Приведем пример: если бы Земля упала на Солнце, то произошло бы гравитационное взаимодействие: выделилась бы гравитационная энергия, образовалась бы гравитационная сферически-симметричная волна и наблюдатель смог бы ее зарегистрировать. "Здесь же произошло аналогичное, но уникальное, с точки зрения астрофизики, явление: столкнулись два массивных тела - две черные дыры", - отметил Гнатык.

Вернемся к теории

Черная дыра - это еще одно предсказание общей теории относительности Эйнштейна, которое предусматривает, что тело, которое имеет огромную массу, но эта масса сконцентрирована в малом объеме, способно существенно искажать пространство вокруг себя, вплоть до его замыкания. То есть, предполагалось, что когда достигается критическая концентрация массы этого тела - такая, что размер тела будет меньше, чем так называемый гравитационный радиус, то вокруг этого тела пространство замкнется и топология его будет такой, что никакой сигнал с него за пределы замкнутого пространства распространиться не сможет.

"То есть, черная дыра, простыми словами, это массивный объект, который настолько тяжелый, что замыкает вокруг себя пространство-время", - говорит ученый.

И мы, по его словам, можем посылать любые сигналы этому объекту, а он нам - нет. То есть, никакие сигналы не могут выходить за пределы черной дыры.

Черная дыра живет по обычным физическим законам, но в результате сильной гравитации, ни одно материальное тело, даже фотон, не способно выйти за пределы этой критической поверхности. Черные дыры образуются в ходе эволюции обычных звезд, когда происходит коллапс центрального ядра и часть вещества звезды, коллапсируя, превращается в черную дыру, а другая часть звезды выбрасывается в виде оболочки Сверхновой звезды, превращаясь в так называемую "вспышку" Сверхновой звезды.

Как мы увидели гравитационную волну

Приведем пример. Когда на поверхности воды у нас есть два поплавка и вода спокойная - то расстояние между ними постоянное. Когда приходит волна, то она смещает эти поплавки и расстояние между поплавками изменится. Волна прошла - и поплавки возвращаются на свои прежние позиции, а расстояние между ними восстанавливается.

Аналогичным образом распространяется и гравитационная волна в пространстве-времени: она сжимает и растягивает тела и объекты, которые встречаются на ее пути. "Когда на пути волны встречается некий объект - он деформируется вдоль своих осей, а после ее прохождения - возвращается к прежней форме. Под действием гравитационной волны все тела деформируются, но эти деформации - очень незначительны", - говорит Гнатык.

Когда прошла волна, которую зафиксировали ученые, то относительный размер тел в пространстве изменился на величину порядка 1 умножить на 10 в минус 21-ой степени. Например, если взять метровую линейку, то она сжалась на такую ​​величину, которая составляла ее размер, умноженный на 10 в минус 21-ой степени. Это очень мизерная величина. И проблема заключалась в том, что ученым нужно было научиться это расстояние измерить. Обычные методы давали точность порядка 1 к 10 в 9 степени милионнам, а здесь необходима гораздо более высокая точность. Для этого создали так называемые гравитационные антенны (детекторы гравитационных волн).


Обсерватория LIGO (фото - EPA)

Антенна, которая зафиксировала гравитационные волны, построена таким образом: существует две трубы, примерно по 4 километра в длину, расположенные в форме буквы "Г", но с одинаковыми плечами и под прямым углом. Когда на систему падает гравитационная волна, она деформирует крылья антенны, но в зависимости от ее ориентации, она деформирует одно больше, а второе - меньше. И тогда возникает разность хода, интерференционная картина сигнала меняется - возникает суммарная положительная или отрицательная амплитуда.

"То есть, прохождение гравитационной волны аналогично волне на воде, проходящей между двумя поплавками: если бы мы мерили расстояние между ними во время и после прохождения волны, то мы бы увидели, что расстояние изменилось бы, а потом снова стало прежним", - рассказал Гнатык.

Здесь же измеряется относительное изменение расстояния двух крыльев интерферометра, из которых каждое имеет около 4 километров в длину. И только очень точные технологии и системы позволяют измерить такое микроскопическое смещение крыльев, вызванное гравитационной волной.

На границе Вселенной: откуда пришла волна

Ученые зафиксировали сигнал с помощью двух детекторов, которые в США расположены в двух штатах: Луизиане и Вашингтон на расстоянии около 3 тыс километров. Ученым удалось оценить, откуда и с какого расстояния пришел этот сигнал. Оценки показывают, что сигнал пришел с расстояния, которое составляет 410 Мегапарсеков. Мегапарсек - это расстояние, которое свет проходит за три миллиона лет.

Чтобы было легче представить: ближайшая к нам активная галактика со сверхмассивной черной дырой в центре - Центавр А, которая находится от нашей на расстоянии четыре Мегапарсека, в то же время Туманность Андромеды находится на расстоянии 0,7 Мегапарсеков. "То есть расстояние, с которого пришел сигнал гравитационной волны настолько велико, что сигнал шел к Земле примерно 1,3 млрд лет. Это космологические расстояния, которые достигают около 10% горизонта нашей Вселенной", - рассказал ученый.

На таком расстоянии в какой-то далекой галактике произошло слияние двух черных дыр. Эти дыры, с одной стороны, были относительно малыми по размерам, а с другой стороны, большая сила амплитуды сигнала свидетельствует, что они были очень тяжелые. Установлено, что массы их были соответственно 36 и 29 масс Солнца. Масса Солнца, как известно, составляет величину, которая равняется 2 умножить на 10 в 30 степени килограмм. После слияния эти два тела слились и теперь на их месте образовалась одна черная дыра, которая имеет массу, равную 62 массам Солнца. При этом, примерно три массы Солнца выплеснулось в виде энергии гравитационной волны.

Кто и когда сделал открытие

Обнаружить гравитационную волну удалось ученым из международного проекта LIGO 14 сентября 2015 года. LIGO (Laser Interferometry Gravitation Observatory) - это международный проект, в котором принимают участие ряд государств, осуществивших определенный финансовый и научный взнос, в частности США, Италия, Япония, которые являются передовыми в области этих исследований.


Професcоры Райнер Вайс и Кип Торн (фото - EPA)

Была зафиксирована следующая картина: произошло смещение крыльев гравитационного детектора, в результате реального прохождения гравитационной волны через нашу планету и через эту установку. Об этом не сообщили тогда, потому что сигнал нужно было обработать, "почистить", найти его амплитуду и проверить. Это стандартная процедура: от реального открытия, до объявления об открытии - проходит несколько месяцев для того, чтобы выдать обоснованное заявление. "Никто не хочет портить свою репутацию. Это все секретные данные, до обнародования которых - о них никто не знал, ходили только слухи", - отметил Гнатык.

История

Гравитационные волны исследуются с 70-х годов прошлого века. За это время был создан ряд детекторов и проведен ряд фундаментальных исследований. В 80-х годах американский ученый Джозеф Вебер построил первую гравитационную антенну в виде алюминиевого цилиндра, который имел размер порядка нескольких метров, оснащенный пьезо-датчиками, которые должны были зафиксировать прохождение гравитационной волны.

Чувствительность этого прибора была в миллион раз хуже, чем нынешние детекторы. И, конечно, он тогда реально зафиксировать волну не мог, хотя и Вебер заявил, что он это сделал: пресса об этом написала и произошел "гравитацонный бум" - в мире сразу начали строить гравитационные антенны. Вебер стимулировал других ученых заняться гравитационными волнами и продолжать эксперименты над этим явлением, благодаря чему удалось в миллион раз поднять чувствительность детекторов.

Однако само явление гравитационных волн было зарегистрировано еще в прошлом веке, когда ученые обнаружили двойной пульсар. Это была косвенная регистрация факта, что гравитационные волны существуют, доказанная благодаря астрономическим наблюдениям. Пульсар был открыт Расселом Халсом и Джозефом Тейлором в 1974 году, во время проведения наблюдений на радиотелескопе обсерватории Аресибо. Ученые были удостоены Нобелевской премии в 1993 году "за открытие нового типа пульсаров, давшее новые возможности в изучении гравитации".

Исследования в мире и Украине

На территории Италии близок к завершению аналогичный проект, которые называется Virgo. Япония также намерена через год запустить аналогичный детектор, Индия также готовит такой эксперимент. То есть, во многих точках мира существуют подобные детекторы, но они еще не вышли на тот режим чувствительности, чтобы можно было говорить о фиксации гравитационных волн.

"Официально Украина не входит в LIGO и также не участвует в итальянском и японском проектах. Среди таких фундаментальных направлений Украина сейчас принимает участие в проекте LHC (БАК - Большой адронный коллайдер) и в CERN"е (официально станем участником только после уплаты вступительного взноса)", - рассказал ЛІГА.net доктор физико-математических наук Богдан Гнатык.

По его словам, Украина с 2015 года является полноправным членом международной коллаборации CTA (МЧТ- массив черенковских телескопов), которая строит современный телескоп мультиТеВ ного гамма диапазона (с энергиями фотонов до 1014 эВ). "Основными источниками таких фотонов как раз и являются окрестности сверхмассивных черных дыр, гравитационное излучение которых впервые зафиксировал детектор LIGO. Поэтому открытие новых окон в астрономии - гравитационно-волнового и мультиТеВ ного электромагнитного обещает нам еще много открытий в будущем", - добавляет ученый.

Что дальше и как новые знания помогут людям? Ученые расходятся во мнениях. Одни говорят, что это лишь очередная ступень в понимании механизмов Вселенной. Другие видят в этом первые шаги на пути к новым технологиям перемещения сквозь время и пространство. Так или иначе - это открытие в очередной раз доказало, как мало мы понимаем и как много еще предстоит узнать.

Группа ученых из 16 стран впервые получила доказательство существования гравитационных волн на практике. В этом им помогли две черные дыры, которые соединились в одну 1,3 млрд лет назад. В процессе произошел такой выброс энергии, который заставил Землю трястись, как желе. «Фонтанка» попыталась разобраться в представленных доказательствах.

Источник: LIGO

«Мы зафиксировали гравитационную волну», – заявил на пресс-конференции в Вашингтоне исполнительный директор лазерно-интерферометрической гравитационно-волновой обсерватории LIGO Дэвид Рейтс. Его слова вызвали шквал аплодисментов. Все же не так часто фундаментальная наука радует открытиями вселенского масштаба.

Исследование действительно выходит за пределы планеты. Источник колебаний, который удалось обнаружить ученым, находится где-то в южной части звездного неба. Волна пришла со стороны Магеллановых Облаков, которые являются галактиками-спутниками Млечного пути. Возможное местонахождение источника с разной вероятностью отмечено на карте ниже.

Около 1,3 млрд лет назад, полагают ученые, там развивались фантастические события, когда две черные дыры попали под влияние друг друга и стали сближаться. Напомним, «черные дыры» – условное название для космических объектов, которые притягивают к себе все, что находится рядом. Сила притяжения настолько велика, что даже свет не может вырваться за их пределы. Из-за этого на фоне ярких звезд и освещаемых ими объектов «черные дыры» выглядят абсолютно темными.

И вот два таких объекта начали притягиваться друг к другу, двигаясь по улитке. Тем самым они создавали возмущения в гравитационном поле, и от их движения начали расходиться гравитационные волны. Процесс завершился логично: соединением в один космический объект. Визуально это похоже на деление клетки, которое знакомо всем из учебника по биологии, запущенное в обратном направлении.

Исследователи LIGO отмечают критический момент за миллисекунду до окончательного соединения двух «черных дыр» в одну, когда произошел выброс энергии, в 50 раз превышающий энергию всех звезд во Вселенной.

Источник: LIGO

Своеобразный «девятый вал» прошелся по Вселенной и докатился до Земли. Волна ударила в планету и повлияла на ее гравитационное поле. Для наглядности ученые пояснили, что эффект был похож на то, что будет, если ткнуть чем-нибудь желе и оно начнет трястись. Впрочем, для планеты такие сотрясения неопасны, и ничем, кроме сверхчувствительных приборов, они не зафиксированы. Сооснователь LIGO Райнер Вейс при этом наглядно продемонстрировал, как конкретно волна проходит через гравитационное поле.

К тому времени, как волна дошла до Земли, экспериментальные исследования в поисках гравитационных волн велись уже четверть века. Надо сказать, что теоретическая возможность существования гравитационных волн упоминается в нескольких теориях. Например, согласно общей теории относительности Эйнштейна скорость распространения гравитационной волны равняется скорости света в линейном приближении.

Однако экспериментально опровергнуть или подтвердить ни одну из теорий было невозможно, ввиду того, что обнаружить гравитационную волну очень сложно. Чтобы понять масштаб такого явления, надо знать, что в Солнечной системе самыми мощными источниками гравитационных волн являются, собственно, Солнце и Юпитер. И мощность этих волн составляет ничтожные, по сравнению с кинетической энергией этих тел, 5 киловатт.

Однако 14 сентября 2015 года сразу двум гравитационно-волновым обсерваториям в США удалось зафиксировать колебания, которые впоследствии были идентифицированы учеными как гравитационные волны. Сначала колебания зафиксировали в городе Хэнфорд штата Вашингтон, а через 7 миллисекунд в Ливингстоне штата Луизиана. Перепроверка всех данных заняла еще около полугода. После этого ученые смогли рассказать, как им удалось поймать гравитационную волну.

Для измерения использовался лазерный интерферометр. Суть его работы заключается в разделении лазерного луча на два, отличающиеся интенсивностью. Каждый из них далее доходит до зеркала, где отражается и возвращается в систему, а уже оттуда направляется на специальный фотодетектор. Принцип работы системы изображен на видео ниже.

Источник: LIGO

Зеркала находятся на значительном расстоянии от лазера и изолированы от посторонних колебаний. Когда гравитационная волна проходит сквозь Землю, меняется ее форма, а значит, и расстояние зеркал от источника излучения. В результате, после отражения лазерного луча от зеркала, лучу необходимо большее или меньшее расстояние, чтобы дойти до фотодетектора. Микроскопическая разница в попадании лазера на фотодетектор как раз и является методом определения гравитационной волны.

Для большей наглядности ученые определили цветом амплитуду гравитационной волны. Представитель LIGO из Университета Луизианы Габриэла Гонсалес также заявила, что гравитационная волна находится в том диапазоне, который может уловить человеческое ухо. «Мы буквально можем услышать гравитационную волну, мы можем услышать Вселенную. Однако эта волна настолько короткая, что мы услышим только звук, похожий на «плюк!», – пояснила Гонсалес.

Читателям «Фонтанки» также предлагаем услышать гравитационную волну, которая появилась около 1,3 млрд лет назад в результате соединения двух «черных дыр» в далекой-далекой галактике.

«Не так давно сильный интерес научной общественности вызвала серия долгосрочных экспериментов по непосредственному наблюдению гравитационных волн, — писал специалист в области теоретической физики Митио Каку в книге «Космос Эйнштейна» в 2004 году. — Проект LIGO («Лазерный интерферометр для наблюдения гравитационных волн»), возможно, окажется первым, в ходе которого удастся «увидеть» гравитационные волны, скорее всего, от столкновения двух черных дыр в дальнем космосе. LIGO — сбывшаяся мечта физика, первая установка достаточной мощности для измерения гравитационных волн».

Предсказание Каку сбылось: в четверг группа международных ученых из обсерватории LIGO объявила об открытии гравитационных волн.

Гравитационные волны — это колебания пространства-времени, которые «убегают» от массивных объектов (например, черных дыр), движущихся с ускорением. Иными словами, гравитационные волны — это распространяющееся возмущение пространства-времени, бегущая деформация абсолютной пустоты.

Черная дыра — это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть ее не могут даже объекты, движущиеся со скоростью света (и сам свет в том числе). Граница, отделяющая черную дыру от всего остального мира, называется горизонтом событий: все, что происходит внутри горизонта событий, скрыто от глаз внешнего наблюдателя.

Erin Ryan Снимок торта, выложенный в сеть Эрин Райан.

Ловить гравитационные волны ученые начали еще полвека назад: именно тогда американский физик Джозеф Вебер увлекся общей теорией относительности Эйнштейна (ОТО), взял творческий отпуск и стал изучать гравитационные волны. Вебер изобрел первое приспособление, детектирующее гравитационные волны, и вскоре заявил, что зафиксировал «звучание гравитационных волн». Впрочем, научное сообщество опровергло его сообщение.

Однако именно благодаря Джозефу Веберу множество ученых превратилось в «охотников за волнами». Сегодня Вебер считается отцом научного направления гравитационно-волновой астрономии.

«Это — начало новой эры гравитационной астрономии»

Обсерватория LIGO, в которой ученые зафиксировали гравитационные волны, состоит из трех лазерных установок в США: две находятся в штате Вашингтон и одна — в штате Луизиана. Вот как описывает работу лазерных детекторов Митио Каку: «Лазерный луч расщепляется на два отдельных луча, которые далее идут перпендикулярно друг другу. Затем, отразившись от зеркала, они вновь соединяются. Если через интерферометр (измерительный прибор) пройдет гравитационная волна, длины путей двух лазерных лучей претерпят возмущение и это отразится в их интерференционной картине. Чтобы убедиться в том, что сигнал, зарегистрированный лазерной установкой, не случаен, детекторы следует разместить в разных точках Земли.

Только под действием гигантской гравитационной волны, намного превышающей по размеру нашу планету, все детекторы сработают одновременно».

Сейчас коллаборация LIGO зафиксировала гравитационное излучение, вызванное слиянием двойной системы черных дыр с массами 36 и 29 солнечных масс в объект массой 62 массы Солнца. «Это первое прямое (очень важно, что это прямое!) измерение действия гравитационных волн, — дал комментарий корреспонденту отдела науки «Газеты.Ru» профессор физического факультета МГУ Сергей Вятчанин. — То есть принят сигнал от астрофизической катастрофы слияния двух черных дыр. И этот сигнал идентифицирован — это тоже очень важно! Понятно, что это от двух черных дыр. И это есть начало новой эры гравитационной астрономии, которая позволит получать информацию о Вселенной не только через оптические, рентгеновские, электромагнитные и нейтринные источники — но еще и через гравитационные волны.

Можно сказать, что процентов на 90 черные дыры перестали быть гипотетическими объектами. Некоторая доля сомнения остается, но все-таки сигнал, который пойман, уж больно хорошо ложится на то, что предсказывают бесчисленные моделирования слияния двух черных дыр в соответствии с общей теорией относительности.

Это является сильным доводом того, что черные дыры существуют. Другого объяснения такому сигналу пока нет. Поэтому принимается, что черные дыры существуют».

«Эйнштейн был бы очень счастлив»

Гравитационные волны в рамках своей общей теории относительности предсказал Альберт Эйнштейн (который, кстати, скептически относился к существованию черных дыр). В ОТО к трем пространственным измерениям добавляется время, и мир становится четырехмерным. Согласно теории, перевернувшей с ног на голову всю физику, гравитация — это следствие искривления пространства-времени под воздействием массы.

Эйнштейн доказал, что любая материя, движущаяся с ускорением, создает возмущение пространства-времени — гравитационную волну. Это возмущение тем больше, чем выше ускорение и масса объекта.

Из-за слабости гравитационных сил по сравнению с другими фундаментальными взаимодействиями эти волны должны иметь весьма малую величину, с трудом поддающуюся регистрации.

Объясняя ОТО гуманитариям, физики часто просят их представить натянутый лист резины, на который опускают массивные шарики. Шарики продавливают резину, и натянутый лист (который олицетворяет пространство-время) деформируется. Согласно ОТО, вся Вселенная — это резина, на которой каждая планета, каждая звезда и каждая галактика оставляют вмятины. Наша Земля вращается вокруг Солнца словно маленький шарик, пущенный кататься вокруг конуса воронки, образованной в результате «продавливания» пространства-времени тяжелым шаром.

HANDOUT/Reuters

Тяжелый шар — это и есть Солнце

Вполне вероятно, что открытие гравитационных волн, являющееся главным подтверждением теории Эйнштейна, претендует на Нобелевскую премию по физике. «Эйнштейн был бы очень счастлив», — сказала Габриэлла Гонсалез, представитель коллаборации LIGO.

По словам ученых, пока рано говорить о практической применимости открытия. «Хотя разве Генрих Герц (немецкий физик, доказавший существование электромагнитных волн. — «Газета.Ru») мог подумать, что будет мобильный телефон? Нет! Мы сейчас ничего не можем представить, — рассказал Валерий Митрофанов, профессор физического факультета МГУ им. М.В. Ломоносова. — Я ориентируюсь на фильм «Интерстеллар». Его критикуют, да, но вообразить ковер-самолет мог даже дикий человек. И ковер-самолет реализовался в самолет, и все. А здесь уже нужно представить что-то очень сложное. В «Интерстелларе» один из моментов связан с тем, что человек может путешествовать из одного мира в другой. Если так представить, то верите ли вы, что человек может путешествовать из одного мира в другой, что может быть много вселенных — все, что угодно? Я не могу ответить «нет». Потому что физик не может ответить на такой вопрос «нет»! Только если это противоречит каким-то законам сохранения! Есть варианты, которые не противоречат известным физическим законам. Значит, путешествия по мирам могут быть!»

Что значит для нас обнаружение гравитационных волн.

Думаю, все уже в курсе, что пару дней назад учёные впервые объявили об обнаружении гравитационных волн. Про это было много новостей, по ТВ, на новостных сайтах и вообще везде. Однако при этом никто не затруднился объяснить доступным языком, что дает нам это открытие в практическом плане.

На самом деле, всё просто, достаточно провести аналогию с подводной лодкой:

Источник:

Обнаружение подводных лодок - является первой и главной задачей при борьбе с ними. Как и всякий предмет, лодка своим присутствием влияет на окружающую среду. Иными словами, лодка имеет собственные физические поля. К более известным физическим полям подводной лодки относятся гидроакустическое, магнитное, гидродинамическое, электрическое, низкочастотное электромагнитное, а также тепловое, оптическое. Выделение физических полей лодки на фоне полей океана (моря) лежит в основе главных способов обнаружения.
Способы обнаружения подводных лодок разделяются по типу физических полей: Акустический, Магнитометрический, Радиолокационный, Газовый, Тепловой и.т.д.

С космосом та же фигня. Мы смотрим на звезды через телескопы, делаем фотографии Марса, ловим излучения и вообще пытаемся познать небеса всеми доступными способами. А теперь, после того как зафиксированы эти волны, добавился и ещё один способ изучения - гравитационный. Мы сможем осмотреть космос основываясь на этих колебаниях.

То есть, как подводная лодка прошла в морском пространстве, и оставила за собой "след", по которому её могут вычислить, точно так же и небесные тела, теперь могут изучаться под другим углом для более полной картины. В будущем, мы сможем посмотреть как гравитационные волны огибают разные светила, галактики, планеты, научимся ещё лучше вычислять космические траектории объектов (А может даже и заранее узнавать и прогнозировать приближения метеоритов) увидим поведение волн в особых условиях, ну и всякое такое.

Что это даст?

Пока не ясно. Но со временем, аппаратура станет более точной и чувствительной, и о гравитационных волнах наберётся богатый материал. Основываясь на этих материалах пытливые умы начнут находить разного рода аномалии, загадки и закономерности. Эти закономерности и аномалии, в свою очередь, будут служить либо опровержением, либо подтверждением старых теорий. Будут создаваться дополнительные математические формулы, интересные гипотезы (Британские учёные выяснили, что голуби находят дорогу домой ориентируясь по гравитационным волнам!) и многое подобное. А жёлтая пресса, обязательно запустит какой-нибудь миф, типа "Гравитационное цунами", которое однажды нагрянет, накроет нашу солнечную систему и всему живому придет кидык. И Вангу приплетут ещё. Короче, весело будет:]

И что в итоге?

В итоге, мы получим более совершенную область науки, которая сможет давать более точное и широкое представление о нашем мире. А если повезёт и учёным попадётся какой-нибудь удивительный эффект... (Типа, если две гравитационные волны в полнолуние "врезаются" друг в друга под определённым углом с нужной скоростью, то случается локальный очаг антигравитации, о-па!)... то мы сможем надеяться на серьёзный научный прогресс.

11 февраля 2016-го года международная группа ученых, в том числе из России, на пресс-конференции в Вашингтоне объявила об открытии, которое рано или поздно изменит развитие цивилизации. Удалось на практике доказать гравитационные волны или волны пространства-времени. Их существование предсказал еще 100 лет назад Альберт Эйнштейн в своей .

Никто не сомневается, что это открытие будет удостоено Нобелевской премии. Учёные не торопятся говорить о его практическом применении. Но напоминают, что еще совсем недавно человечество точно также не знало, что делать с электромагнитными волнами, которые в итоге привели к настоящей научно-технической революции.

Что такое гравитационные волны простым языком

Гравитация и всемирное тяготение – это одно и то же. Гравитационные волны являются одним из решений ОТС. Распространяться они должны со скоростью света. Излучает его любое тело, движущееся с переменным ускорением.

Например, вращается по своей орбите с переменным ускорением, направленным к звезде. И это ускорение постоянно изменяется. Солнечная система излучает энергию порядка нескольких киловатт в гравитационных волнах. Это ничтожная величина, сравнимая с 3 старыми цветными телевизорами.

Другое дело – два вращающихся вокруг друг друга пульсара (нейтронных звезды). Они вращаются по очень тесным орбитам. Такая «парочка» была обнаружена астрофизиками и наблюдалась долгое время. Объекты готовы были друг на друга упасть, что косвенно свидетельствовало, что пульсары излучают волны пространства-времени, то есть энергию в их поле.

Гравитация – сила тяготения. Нас тянет к земле. А суть гравитационной волны – изменение этого поля, чрезвычайно слабое, когда до нас доходит. К примеру, возьмем уровень воды в водоёме. Напряженность гравитационного поля — ускорение свободного падения в конкретной точке. По нашему водоёму бежит волна, и вдруг меняется ускорение свободного падения, совсем чуть-чуть.

Такие опыты начались в 60-е годы прошлого столетия. В ту пору придумывали так: подвешивали огромный алюминиевый цилиндр, охлажденный во избежание внутренних тепловых колебаний. И ждали, когда до нас внезапно дойдет волна от столкновения, например, двух массивных черных дыр. Исследователи были полны энтузиазма и говорили, что весь земной шар может испытать воздействие гравитационной волны, прилетевшей из космического пространства. Планета начнет колебаться, и можно будет изучить эти сейсмические волны (сжатия, сдвига и поверхностные).

Важная статья об устройстве простым языком, и как американцы и LIGO украли идею советских учёных и построили интроферометры, позволившие сделать открытие. Никто не говорит об этом, все молчат!

Между прочим, гравитационное излучение больше интересно с позиции реликтового излучения, найти которое пытаются по изменению спектра электромагнитного излучения. Реликтовое и электромагнитное излучение появились 700 тыс. лет после Большого взрыва, затем в процессе расширения вселенной, заполненной горячим газом с бегающими ударными волнами, превратившимися позже в галактики. При этом, естественно, должны были излучаться гигантское, умопомрачительное количество волн пространства-времени, влияющих на длину волны реликтового излучения, которое в то время еще было оптическим. Отечественный астрофизик Сажин пишет и регулярно публикует статьи на эту тему.

Неверная интерпретация открытия гравитационных волн

«Висит зеркало, на него действует гравитационная волна, и оно начинает колебаться. И даже самые незначительные колебания амплитудой меньше размера атомного ядра замечаются приборами» — такая неверная интерпретация, например, используется в статье Википедии. Не поленитесь, найдите статью советских учёных 1962 года.

Во-первых, зеркало должно быть массивным, чтобы почувствовать «рябь». Во-вторых, его нужно охлаждать практически до абсолютного нуля (по Кельвину), чтобы избежать собственных тепловых колебаний. Скорее всего не то что в 21 веке, а вообще никогда не удастся обнаружить элементарную частицу — носителя гравитационных волн: