Функции на отрезке. Непрерывность функции на отрезке

  • Дата: 04.12.2020

Определение

Пусть функция `y=f(x)` определена на некотором интервале, содержащем точку `ainR`. Точка `a` называется точкой локального максимума функции `f`, если существует `epsilon` - окрестность точки `a` что для любого `x!=a` из этой окрестности `f(x)

Если выполнено неравенство `f(x)>f(a)`, то `a` называется точкой локального минимума функции `f`.

Точки локального максимума и локального минимума называют точками локального экстремума.

Теорема 5.1 (Ферма)

Если точка `a` является точкой локального экстремума функции `y=f(x)` и функция `f` имеет производную в этой точке, то `f^"(a)=0`.

Физический смысл: при одномерном движении с возвращением в точке максимального удаления должна быть остановка. Геометрический смысл: касательная в точке локального экстремума горизонтальна.

Замечание.

Из теоремы Ферма следует, что если функция имеет экстремум в точке `a`, то в этой точке производная функции либо равна нулю, либо не существует. Например, функция `y=|x|` имеет минимум в точке `x=0`, а производная в этой точке не существует (см. пример 4.2). Точки, в которых функция определена, а производная равна нулю или не существует, будем называть критическими .

Итак, если у функции имеются точки экстремума, то они лежат среди критических точек (критические точки «подозрительны» на экстремум). Для формулировки условий, обеспечивающих наличие экстремума в критической точке, нам потребуется следующее понятие.

Напомним, что под промежутком понимается интервал (конечный или бесконечный), полуинтервал или отрезок числовой прямой.

Определение

Пусть функция `y=f(x)` определена на промежутке `I`.

1) Функция `y=f(x)` возрастает

2) Функция `y=f(x)` убывает на `I`, если для любых `x,yinI`, `xf(y)`.

Если функция возрастает или убывает на `I`, то говорят, что функция монотонна на промежутке `I`.

Условия монотонности . Пусть функция `y=f(x)` определена на промежутке `I` с концами `a`, `b`, дифференцируема на `(a, b)` и непрерывна в концах, если они принадлежат `I`. Тогда

1) если `f^"(x)>0` на `(a, b)`, то функция возрастает на `I`;

2) если `f^"(x)<0` на `(a, b)`, то функция убывает на `I`.

Условия экстремума . Пусть функция `y=f(x)` определена на интервале `(ab)`, непрерывна в точке `x_0 in(a, b)` и дифференцируема на `(a,x_0) uu (x_0,b)`. Тогда

1) если `f^"(x)>0` на `(a;x_0)` и `f^"(x)<0` на `(x_0;b)`, то `x_0` - точка локального максимума функции `f`;

2) если `f^"(x)<0` на `(a;x_0)` и `f^"(x)>0` на `(x_0;b)`, то `x_0` - точка локального минимума функции `f`.

Пример 5.1

Исследовать функцию `y=x^3-3x` на монотонность и экстремумы на области определения.

Данная функция определена на `R` и дифференцируема в каждой точке (см. следствие теоремы 4.2), причём `y^"=3(x^2-1)`. Так как `y^"<0` при `x in(-1,1)`; `y^">0` при `x in(-oo,-1)uu(1,+oo)`, то функция возрастает на лучах `(-oo,-1]` и ``. По условию экстремума `x=-1` - точка локального максимума, а `x=1` - точка локального минимума. Так как `y^"=0` только в точках `x=1` и `x=-1`, то по теореме Ферма других точек экстремума у функции нет.

Рассмотрим важный класс задач, в которых используется понятие производной - задачи нахождения наибольшего и наименьшего значения функции на отрезке.

Пример 5.2

Найти наибольшее и наименьшее значение функции `y=x^3-3x` на отрезке: а) `[-2;0]`; б) ``.

а) Из примера 5.1 следует, что функция возрастает на `(-oo,-1]` и убывает на `[-1,1]`. Так что `y(-1)>=y(x)` при всех `x in[-2;0]` и `y_"наиб"=y(-1)=2` - наибольшее значение функции на отрезке `[-2;0]`. Чтобы найти наименьшее значение, нужно сравнить значения функции на концах отрезка. Поскольку `y(-2)=-2`, а `y(0)=0`, то `y_"наим"=-2` - наименьшее значение функции на отрезке `[-2;0]`.

б) Так как на луче ``, поэтому `y_"наим"=y(1)=-2`, `y_"наиб"=y(3)=18`.

Замечание

Отметим, что непрерывная на отрезке функция всегда имеет наибольшее и наименьшее значение.

Пример 5.3

Найти наибольшее и наименьшее значение функции `y=x^3-12|x+1|` на отрезке `[-4;3]`.

Отметим, что функция непрерывна на всей числовой прямой. Обозначим `f_1(x)=x^3+12(x+1)`, `f_2(x)=x^3-12(x+1)`. Тогда `y=f_1(x)` при `-4<=x<=-1` и `y=f_2(x)` при `-1<=x<=3`. Находим `f_1^"(x)=3x^2+12`, `f_2^"(x)=3x^2-12`. Уравнение `f_1^"(x)=0` не имеет действительных корней, а уравнение `f_2^"(x)=0` имеет два действительных корня `x_1=-2`, `x_2=2`, из которых интервалу `(-1;3)` принадлежит только точка `x_2`. В точке `x=-1` функция определена, но не имеет производной (можно, например, провести рассуждения, аналогичные рассуждениям примера 4.2). Итак, имеется две критические точки: `x=-1` и `x=2`. Производная `y^"(x)=f_1^"(x)>0` на `(-4;-1)`, `y^"(x)=f_2^"(x)<0` на `(-1;2)` и `y^"(x)=f_2^"(x)>0` на `(2;3)`. Запишем все исследования в таблице:

`y_"наиб"=-1`; `y_"наим"=-100`.

На рисунках ниже показано, где функция может достигать наименьшего и наибольшего значения. На левом рисунке наименьшее и наибольшее значения зафиксированы в точках локального минимума и максимума функции. На правом рисунке - на концах отрезка.

Если функция y = f (x ) непрерывна на отрезке [a , b ] , то она достигает на этом отрезке наименьшего и наибольшего значений . Это, как уже говорилось, может произойти либо в точках экстремума , либо на концах отрезка. Поэтому для нахождения наименьшего и наибольшего значений функции , непрерывной на отрезке [a , b ] , нужно вычислить её значения во всех критических точках и на концах отрезка, а затем выбрать из них наименьшее и наибольшее.

Пусть, например, требуется определить наибольшее значение функции f (x ) на отрезке [a , b ] . Для этого следует найти все её критические точки, лежащие на [a , b ] .

Критической точкой называется точка, в которой функция определена , а её производная либо равна нулю, либо не существует. Затем следует вычислить значения функции в критических точках. И, наконец, следует сравнить между собой по величине значения функции в критических точках и на концах отрезка (f (a ) и f (b ) ). Наибольшее из этих чисел и будет наибольшим значением функции на отрезке [a , b ] .

Аналогично решаются и задачи на нахождение наименьших значений функции .

Ищем наименьшее и наибольшее значения функции вместе

Пример 1. Найти наименьшее и наибольшее значения функции на отрезке [-1, 2] .

Решение. Находим производную данной функции . Приравняем производную нулю () и получим две критические точки: и . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке достаточно вычислить её значения на концах отрезка и в точке , так как точка не принадлежит отрезку [-1, 2] . Эти значения функции - следующие: , , . Из этого следует, что наименьшее значение функции (на графике ниже обозначено красным), равное -7, достигается на правом конце отрезка - в точке , а наибольшее (тоже красное на графике), равно 9, - в критической точке .

Если функция непрерывна в некотором промежутке и этот промежуток не является отрезком (а является, например, интервалом; разница между интервалом и отрезком: граничные точки интервала не входят в интервал, а граничные точки отрезка входят в отрезок), то среди значений функции может и не быть наименьшего и наибольшего. Так, например, функция, изображённая на рисунке ниже, непрерывна на ]-∞, +∞[ и не имеет наибольшего значения.

Однако для любого промежутка (закрытого, открытого или бесконечного) справедливо следующее свойство непрерывных функций.

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных .

Пример 4. Найти наименьшее и наибольшее значения функции на отрезке [-1, 3] .

Решение. Находим производную данной функции как производную частного:

.

Приравниваем производную нулю, что даёт нам одну критическую точку: . Она принадлежит отрезку [-1, 3] . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Сравниваем эти значения. Вывод: , равного -5/13, в точке и наибольшего значения , равного 1, в точке .

Продолжаем искать наименьшее и наибольшее значения функции вместе

Есть преподаватели, которые по теме нахождения наименьшего и наибольшего значений функции не дают студентам для решения примеры сложнее только что рассмотренных, то есть таких, в которых функция - многочлен либо дробь, числитель и знаменатель которой - многочлены. Но мы не ограничимся такими примерами, поскольку среди преподавателей бывают любители заставить студентов думать по полной (таблице производных). Поэтому в ход пойдут логарифм и тригонометрическая функция.

Пример 8. Найти наименьшее и наибольшее значения функции на отрезке .

Решение. Находим производную данной функции как производную произведения :

Приравниваем производную нулю, что даёт одну критическую точку: . Она принадлежит отрезку . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Результат всех действий: функция достигает наименьшего значения , равного 0, в точке и в точке и наибольшего значения , равного e ² , в точке .

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных .

Пример 9. Найти наименьшее и наибольшее значения функции на отрезке .

Решение. Находим производную данной функции:

Приравниваем производную нулю:

Единственная критическая точку принадлежит отрезку . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Вывод: функция достигает наименьшего значения , равного , в точке и наибольшего значения , равного , в точке .

В прикладных экстремальных задачах нахождение наименьшего (наибольшего) значений функции, как правило, сводится к нахождению минимума (максимума). Но больший практический интерес имеют не сами минимумы или максимумы, а те значения аргумента, при которых они достигаются. При решении прикладных задач возникает дополнительная трудность - составление функций, описывающих рассматриваемое явление или процесс.

Пример 10. Резервуар ёмкостью 4 , имеющий форму параллелепипеда с квадратным основанием и открытый сверху, нужно вылудить оловом. Каковы должны быть размеры резервуара, чтобы на его покрытие ушло наименьшее количество материала?

Решение. Пусть x - сторона основания, h - высота резервуара, S - площадь его поверхности без крышки, V - его объём. Площадь поверхности резервуара выражается формулой , т.е. является функцией двух переменных . Чтобы выразить S как функцию одной переменной, воспользуемся тем, что , откуда . Подставив найденное выражение h в формулу для S :

Исследуем эту функцию на экстремум. Она определена и дифференцируема всюду в ]0, +∞[ , причём

.

Приравниваем производную нулю () и находим критическую точку . Кроме того, при производная не существует, но это значение не входит в область определения и поэтому не может быть точкой экстремума. Итак, - единственная критическая точка. Проверим её на наличие экстремума, используя второй достаточный признак. Найдём вторую производную . При вторая производная больше нуля (). Значит, при функция достигает минимума . Поскольку этот минимум - единственный экстремум данной функции, он и является её наименьшим значением . Итак, сторона основания резервуара должна быть равна 2 м, а его высота .

Для самопроверки при расчётах можно воспользоваться

Определение 4. Функция называется непрерывной на отрезке, если она непрерывна в каждой точке этого отрезка (в точке a непрерывна справа, т.е. , а в точке b непрерывна слева, т. е.).

Все основные элементарные функции непрерывны в области их определения.

Свойства функций, непрерывных на отрезке:

  • 1) Если функция непрерывна на отрезке, то она ограничена на этом отрезке (первая теорема Вейерштрасса).
  • 2) Если функция непрерывна на отрезке, то на этом отрезке она достигает своего наименьшего значения и наибольшего значения (вторая теорема Вейерштрасса) (см. рис. 2).
  • 3) Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то внутри отрезка существует хотя бы одна точка такая, что (теорема Больцано-Коши).

Точки разрыва функции и их классификация

функция непрерывность точка отрезок

Точки, в которых условие непрерывности не выполняется, называются точками разрыва этой функции. Если - точка разрыва функции, то в ней не выполняется хотя бы одно из трех условий непрерывности функции, указанных в определениях 1, 2, а именно:

1) Функция определена в окрестности точки, но не определена в самой точке. Так функция, рассмотренная в примере 2 а) имеет разрыв в точке, так как не определена в этой точке.

2) Функция определена в точке и ее окрестности, существуют односторонние пределы и, но они не равны между собой: . Например, функция из примера 2 б) определена в точке и ее окрестности, но, так как, а.

3) Функция определена в точке и ее окрестности, существуют односторонние пределы и, они равны между собой, но не равны значению функции в точке: . Например, функция. Здесь - точка разрыва: в этой точке функция определена, существуют односторонние пределы и, равные между собой, но, т. е. .

Точки разрыва функции классифицируются следующим образом.

Определение 5. Точка называется точкой разрыва первого рода функции, если в этой точке существуют конечные пределы и, но они не равны между собой: . Величина называется при этом скачком функции в точке.

Определение 6 . Точка называется точкой устранимого разрыва функции, если в этой точке существуют конечные пределы и, они равны между собой: , но сама функция не определена в точке, или определена, но.

Определение 7. Точка называется точкой разрыва второго рода функции, если в этой точке хотя бы один из односторонних пределов (или) не существует или равен бесконечности.

Пример 3. Найти точки разрыва следующих функций и определить их тип: а) б)

Решение. а) Функция определена и непрерывна на интервалах, и, так как на каждом из этих интервалов она задана непрерывными элементарными функциями. Следовательно, точками разрыва данной функции могут быть только те точки, в которых функция меняет свое аналитическое задание, т.е. точки и. Найдем односторонние пределы функции в точке:

Так как односторонние пределы существуют и конечны, но не равны между собой, то точка является точкой разрыва первого рода. Скачок функции:

Для точки находим.


С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования... Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.

Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X , который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком , открытым интервалом , бесконечным промежутком .

В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x) .

Навигация по странице.

Наибольшее и наименьшее значение функции - определения, иллюстрации.

Кратко остановимся на основных определениях.

Наибольшим значением функции , что для любого справедливо неравенство .

Наименьшим значением функции y=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе .

Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.

Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.

Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.

Сразу ответим на один из самых распространенных вопросов по этой теме:"Всегда ли можно определить наибольшее (наименьшее) значение функции"? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.

Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.

На отрезке


На первом рисунке функция принимает наибольшее (max y ) и наименьшее (min y ) значения в стационарных точках, находящихся внутри отрезка [-6;6] .

Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на . В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее - в точке с абсциссой, соответствующей правой границе интервала.

На рисунке №3 граничные точки отрезка [-3;2] являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.

На открытом интервале


На четвертом рисунке функция принимает наибольшее (max y ) и наименьшее (min y ) значения в стационарных точках, находящихся внутри открытого интервала (-6;6) .

На интервале , о наибольшем значении никаких выводов сделать нельзя.

На бесконечности


В примере, представленном на седьмом рисунке, функция принимает наибольшее значение (max y ) в стационарной точке с абсциссой x=1 , а наименьшее значение (min y ) достигается на правой границе интервала. На минус бесконечности значения функции асимптотически приближаются к y=3 .

На интервале функция не достигает ни наименьшего, ни наибольшего значения. При стремлении к x=2 справа значения функции стремятся к минус бесконечности (прямая x=2 является вертикальной асимптотой), а при стремлении абсциссы к плюс бесконечности, значения функции асимптотически приближаются к y=3 . Графическая иллюстрация этого примера приведена на рисунке №8.

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке .

Запишем алгоритм, позволяющий находить наибольшее и наименьшее значение функции на отрезке.

  1. Находим область определения функции и проверяем, содержится ли в ней весь отрезок .
  2. Находим все точки, в которых не существует первая производная и которые содержатся в отрезке (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.
  3. Определяем все стационарные точки, попадающие в отрезок . Для этого, приравниваем ее к нулю, решаем полученное уравнение и выбираем подходящие корни. Если стационарных точек нет или ни одна из них не попадает в отрезок, то переходим к следующему пункту.
  4. Вычисляем значения функции в отобранных стационарных точках (если такие имеются), в точках, в которых не существует первая производная (если такие имеются), а также при x=a и x=b .
  5. Из полученных значений функции выбираем наибольшее и наименьшее - они и будут искомыми наибольшим и наименьшим значениями функции соответственно.

Разберем алгоритм при решении примера на нахождение наибольшего и наименьшего значения функции на отрезке.

Пример.

Найти наибольшее и наименьшее значение функции

  • на отрезке ;
  • на отрезке [-4;-1] .

Решение.

Областью определения функции является все множество действительных чисел, за исключением нуля, то есть . Оба отрезка попадают в область определения.

Находим производную функции по :

Очевидно, производная функции существует во всех точках отрезков и [-4;-1] .

Стационарные точки определим из уравнения . Единственным действительным корнем является x=2 . Эта стационарная точка попадает в первый отрезок .

Для первого случая вычисляем значения функции на концах отрезка и в стационарной точке, то есть при x=1 , x=2 и x=4 :

Следовательно, наибольшее значение функции достигается при x=1 , а наименьшее значение – при x=2 .

Для второго случая вычисляем значения функции лишь на концах отрезка [-4;-1] (так как он не содержит ни одной стационарной точки):

Решение.

Начнем с области определения функции. Квадратный трехчлен в знаменателе дроби не должен обращаться в ноль:

Легко проверить, что все интервалы из условия задачи принадлежат области определения функции.

Продифференцируем функцию:

Очевидно, производная существует на всей области определения функции.

Найдем стационарные точки. Производная обращается в ноль при . Эта стационарная точка попадает в интервалы (-3;1] и (-3;2) .

А теперь можно сопоставить полученные в каждом пункте результаты с графиком функции. Синими пунктирными линиями обозначены асимптоты.

На этом можно закончить с нахождением наибольшего и наименьшего значения функции. Алгоритмы, разобранные в этой статье, позволяют получить результаты при минимуме действий. Однако бывает полезно сначала определить промежутки возрастания и убывания функции и только после этого делать выводы о наибольшем и наименьшем значении функции на каком-либо интервале. Это дает более ясную картину и строгое обоснование результатов.

Непрерывность элементарных функций

Теоремы о непрерывности функций следуют непосредственно из соответствующих теорем о пределах.

Теорема. Сумма, произведение и частное двух непрерывных функций есть функция непрерывная (для частного за исключением тех значений аргумента, в которых делитель равен нулю).

Теорема. Пусть функции u = φ (x ) непрерывна в точке х 0 , а функция y = f (u ) непрерывна в точке u 0 = φ (х 0). Тогда сложная функция f (φ (x )) состоящая из непрерывных функций, непрерывна в точке x 0 .

Теорема. Если функция у = f (х ) непрерывна и строго монотонна на [а ; b ] оси Ох , то обратная функция у = φ (х ) также непрерывна и монотонна на соответствующем отрезке [c ;d ] оси Оу (без доказательства).

Непрерывные на отрезке функции имеют ряд важных свойств. Сформулируем их в виде теорем, не приводя доказательств.

Теорема (Вейерштрасса) . Если функция непрерывна на отрезке, то она достигает на этом отрезке своего наибольшего и наименьшего значений.

Изображенная на рисунке 5 функция у = f (x ) непрерывна на отрезке [а ; b ], принимает свое наибольшее значение М в точке x 1 , а наименьшее m - в точке х 2 . Для любого х [а ; b ] имеет место неравенство m f (x ) ≤ М .

Следствие. Если функция непрерывна на отрезке, то она ограничена на этом отрезке.

Теорема (Больцано - Коши). Если функция у = f (x ) непрерывна на отрезке [a ; b ] и принимает на его концах неравные значения f (a ) = A и f (b ) = =В , то на этом отрезке она принимает и все промежуточные значения между А и В .

Геометрически теорема очевидна (см. рис. 6).

Для любого числа С , заключенного между А и В , найдется точка с внутри этого отрезка такая, что f (с ) = С . Прямая у = С пересечет график функции по крайней мере в одной точке.

Следствие. Если функция у = f (x ) непрерывна на отрезке [а ; b ] и на его концах принимает значения разных знаков, то внутри отрезка [а ; b ] найдется хотя бы одна точка с , в которой данная функция f (x ) обращается в нуль: f (с ) = 0.

Геометрический смысл теоремы: если график непрерывной функции переходит с одной стороны оси Ох на другую, то он пересекает ось Ox (см. рис. 7).

Рис. 7.