Шифры замены (подстановки). Шифры замены - учебная и научная деятельность анисимова владимира викторовича

  • Дата: 21.09.2019

Максимальное количество ключей для любого шифра этого вида не превышает n!, где n - количество символов в алфавите. С увеличением числа n значение n! растет очень быстро (1! = 1, 5! = 120, 10! = 3628800, 15! = 1307674368000). При больших n для приближенного вычисления n! можно воспользоваться формулой Стирлинга

Шифр Цезаря. Данный шифр был придуман Гаем Юлием Цезарем и использовался им в своей переписке (1 век до н.э.). Применительно к русскому языку суть его состоит в следующем. Выписывается исходный алфавит (А, Б, ..., Я), затем под ним выписывается тот же алфавит, но с циклическим сдвигом на 3 буквы влево.

Рис.3.

При зашифровке буква А заменяется буквой Г, Б - на Д и т. д. Так, например, исходное сообщение «АБРАМОВ» после шифрования будет выглядеть «ГДУГПСЕ». Получатель сообщения «ГДУГПСЕ» ищет эти буквы в нижней строке и по буквам над ними восстанавливает исходное сообщение «АБРАМОВ».

Ключом в шифре Цезаря является величина сдвига нижней строки алфавита. Количество ключей для всех модификаций данного шифра применительно к алфавиту русского языка равно 33. Возможны различные модификации шифра Цезаря, в частности лозунговый шифр.

Лозунговый шифр. Для данного шифра построение таблицы шифрозамен основано на лозунге (ключе) - легко запоминаемом слове. Вторая строка таблицы шифрозамен заполняется сначала словом-лозунгом (причем повторяющиеся буквы отбрасываются), а затем остальными буквами, не вошедшие в слово-лозунг, в алфавитном порядке. Например, если выбрано слово-лозунг «ДЯДИНА», то таблица имеет следующий вид.

Рис.4.

При шифровании исходного сообщения «АБРАМОВ» по приведенному выше ключу шифрограмма будет выглядеть «ДЯПДКМИ».

Полибианский квадрат. Шифр изобретен греческим государственным деятелем, полководцем и историком Полибием (III век до н.э.). Применительно к русскому алфавиту суть шифрования заключалась в следующем. В квадрат 6х6 выписываются буквы (рис. 5).

Шифруемая буква заменяется на координаты квадрата (строка-столбец), в котором она записана. Например, если исходное сообщение «АБРАМОВ», то шифрограмма - «11 12 36 11 32 34 13». В Древней Греции сообщения передавались с помощью оптического телеграфа (с помощью факелов). Для каждой буквы сообщения в начале поднималось количество факелов, соответствующее номеру строки буквы, а затем номеру столбца.

Шифрующая система Трисемуса (Тритемия). В 1508 г. аббат из Германии Иоганн Трисемус написал печатную работу по криптологии под названием «Полиграфия». В этой книге он впервые систематически описал применение шифрующих таблиц, заполненных алфавитом в случайном порядке. Для получения такого шифра замены обычно использовались таблица для записи букв алфавита и ключевое слово (или фраза). В таблицу сначала вписывалось по строкам ключевое слово, причем повторяющиеся буквы отбрасывались (рис. 6). Затем эта таблица дополнялась не вошедшими в нее буквами алфавита по порядку. На рис.6 изображена таблица с ключевым словом «ДЯДИНА».

Рис.5.

полибианского квадрата для шифра Трисемуса

Каждая буква открытого сообщения заменяется буквой, расположенной под ней в том же столбце. Если буква находится в последней строке таблицы, то для ее шифрования берут самую верхнюю букву столбца. Например, исходное сообщение «АБРАМОВ», зашифрованное - «ИЙЪИХШК».

Одним из существенных недостатков шифров однозначной замены является их легкаявскрываемость. При вскрытии шифрограмм используются различные приемы, которые даже при отсутствии мощных вычислительных средств позволяют добиться положительного результата. Один из таких приемов базируется на том, что в шифрограммах остается информация о частоте встречаемости букв исходного текста. Если в открытом сообщении часто встречается какая-либо буква, то в шифрованном сообщении также часто будет встречаться соответствующий ей символ. Еще в 1412 году Шихаба ал-Калкашанди в своем труде «Субх ал-Ааша» привел таблицу частоты появления арабских букв в тексте на основе анализа текста Корана. Для разных языков мира существуют подобные таблицы. Так, например, для русского языка такая таблица выглядит следующим образом .

Таблица 1. Вероятности появления букв русского языка в текстах*


*) В таблице приведены оценки вероятностей появления букв русского языка и пробела, полученные на основе анализа научно-технических и художественных текстов общим объемом более 1000000 символов.

Существуют подобные таблицы для пар букв (биграмм). Например, часто встречаемыми биграммами являются «то», «но», «ст», «по», «ен» и т.д. Другой прием вскрытия шифрограмм основан на исключении возможных сочетаний букв. Например, в текстах (если они написаны без орфографических ошибок) нельзя встретить сочетания «чя», «щы», «ьъ» и т.п.

Для усложнения задачи вскрытия шифров однозначной замены еще в древности перед шифрованием из исходных сообщений исключали пробелы и/или гласные буквы. Другим способом, затрудняющим вскрытие, является шифрование биграммами (парами букв).

В шифрах замены (или шифрах подстановки), в отличие от , элементы текста не меняют свою последовательность, а изменяются сами, т.е. происходит замена исходных букв на другие буквы или символы (один или несколько) по неким правилам.

На этой страничке описаны шифры, в которых замена происходит на буквы или цифры. Когда же замена происходит на какие-то другие не буквенно-цифровые символы, на комбинации символов или рисунки, это называют прямым .

Моноалфавитные шифры

В шифрах с моноалфавитной заменой каждая буква заменяется на одну и только одну другую букву/символ или группу букв/символов. Если в алфавите 33 буквы, значит есть 33 правила замены: на что менять А, на что менять Б и т.д.

Такие шифры довольно легко расшифровать даже без знания ключа. Делается это при помощи частотного анализа зашифрованного текста - надо посчитать, сколько раз каждая буква встречается в тексте, и затем поделить на общее число букв. Получившуюся частоту надо сравнить с эталонной. Самая частая буква для русского языка - это буква О, за ней идёт Е и т.д. Правда, работает частотный анализ на больших литературных текстах. Если текст маленький или очень специфический по используемым словам, то частотность букв будет отличаться от эталонной, и времени на разгадывание придётся потратить больше. Ниже приведена таблица частотности букв (то есть относительной частоты встречаемых в тексте букв) русского языка, рассчитанная на базе НКРЯ .

Использование метода частотного анализа для расшифровки шифрованных сообщений красиво описано во многих литературных произведениях, например, у Артура Конана Дойля в романе « » или у Эдгара По в « ».

Составить кодовую таблицу для шифра моноалфавитной замены легко, но запомнить её довольно сложно и при утере восстановить практически невозможно, поэтому обычно придумывают какие-то правила составления таких кодовых страниц. Ниже приведены самые известные из таких правил.

Случайный код

Как я уже писал выше, в общем случае для шифра замены надо придумать, какую букву на какую надо заменять. Самое простое - взять и случайным образом перемешать буквы алфавита, а потом их выписать под строчкой алфавита. Получится кодовая таблица. Например, вот такая:

Число вариантов таких таблиц для 33 букв русского языка = 33! ≈ 8.683317618811886*10 36 . С точки зрения шифрования коротких сообщений - это самый идеальный вариант: чтобы расшифровать, надо знать кодовую таблицу. Перебрать такое число вариантов невозможно, а если шифровать короткий текст, то и частотный анализ не применишь.

Но для использования в квестах такую кодовую таблицу надо как-то по-красивее преподнести. Разгадывающий должен для начала эту таблицу либо просто найти, либо разгадать некую словесно-буквенную загадку. Например, отгадать или решить .

Ключевое слово

Один из вариантов составления кодовой таблицы - использование ключевого слова. Записываем алфавит, под ним вначале записываем ключевое слово, состоящее из неповторяющихся букв, а затем выписываем оставшиеся буквы. Например, для слова «манускрипт» получим вот такую таблицу:

Как видим, начало таблицы перемешалось, а вот конец остался неперемешенным. Это потому, что самая «старшая» буква в слове «манускрипт» - буква «У», вот после неё и остался неперемешенный «хвост». Буквы в хвосте останутся незакодированными. Можно оставить и так (так как большая часть букв всё же закодирована), а можно взять слово, которое содержит в себе буквы А и Я, тогда перемешаются все буквы, и «хвоста» не будет.

Само же ключевое слово можно предварительно тоже загадать, например при помощи или . Например, вот так:

Разгадав арифметический ребус-рамку и сопоставив буквы и цифры зашифрованного слова, затем нужно будет получившееся слово вписать в кодовую таблицу вместо цифр, а оставшиеся буквы вписать по-порядку. Получится вот такая кодовая таблица:

Атбаш

Изначально шифр использовался для еврейского алфавита, отсюда и название. Слово атбаш (אתבש) составлено из букв «алеф», «тав», «бет» и «шин», то есть первой, последней, второй и предпоследней букв еврейского алфавита. Этим задаётся правило замены: алфавит выписывается по порядку, под ним он же выписывается задом наперёд. Тем самым первая буква кодируется в последнюю, вторая - в предпоследнюю и т.д.

Фраза «ВОЗЬМИ ЕГО В ЭКСЕПШН» превращается при помощи этого шифра в «ЭРЧГТЦ ЪЬР Э ВФНЪПЖС». Онлайн-калькулятор шифра Атбаш

ROT1

Этот шифр известен многим детям. Ключ прост: каждая буква заменяется на следующую за ней в алфавите. Так, A заменяется на Б, Б на В и т.д., а Я заменяется на А. «ROT1» значит «ROTate 1 letter forward through the alphabet» (англ. «поверните/сдвиньте алфавит на одну букву вперед»). Сообщение «Хрюклокотам хрюклокотамит по ночам» станет «Цсялмплпубн цсялмплпубнйу рп опшбн». ROT1 весело использовать, потому что его легко понять даже ребёнку, и легко применять для шифрования. Но его так же легко и расшифровать.

Шифр Цезаря

Шифр Цезаря - один из древнейших шифров. При шифровании каждая буква заменяется другой, отстоящей от неё в алфавите не на одну, а на большее число позиций. Шифр назван в честь римского императора Гая Юлия Цезаря, использовавшего его для секретной переписки. Он использовал сдвиг на три буквы (ROT3). Шифрование для русского алфавита многие предлагают делать с использованием такого сдвига:

Я всё же считаю, что в русском языке 33 буквы, поэтому предлагаю вот такую кодовую таблицу:

Интересно, что в этом варианте в алфавите замены читается фраза «где ёж?»:)

Но сдвиг ведь можно делать на произвольное число букв - от 1 до 33. Поэтому для удобства можно сделать диск, состоящий из двух колец, вращающихся относительно друг друга на одной оси, и написать на кольцах в секторах буквы алфавита. Тогда можно будет иметь под рукой ключ для кода Цезаря с любым смещением. А можно совместить на таком диске шифр Цезаря с атбашем, и получится что-то вроде этого:

Собственно, поэтому такие шифры и называются ROT - от английского слова «rotate» - «вращать».

ROT5

В этом варианте кодируются только цифры, остальной текст остаётся без изменений. Производится 5 замен, поэтому и ROT5: 0↔5, 1↔6, 2↔7, 3↔8, 4↔9.

ROT13

ROT13 - это вариация шифра Цезаря для латинского алфавита со сдвигом на 13 символов. Его часто применяют в интернете в англоязычных форумах как средство для сокрытия спойлеров, основных мыслей, решений загадок и оскорбительных материалов от случайного взгляда.

Латинский алфавит из 26 букв делится на две части. Вторая половина записывается под первой. При кодировании буквы из верхней половины заменяются на буквы из нижней половины и наоборот.

ROT18

Всё просто. ROT18 - это комбинация ROT5 и ROT13:)

ROT47

Существует более полный вариант этого шифра - ROT47. Вместо использования алфавитной последовательности A–Z, ROT47 использует больший набор символов, почти все отображаемые символы из первой половины ASCII -таблицы. При помощи этого шифра можно легко кодировать url, e-mail, и будет непонятно, что это именно url и e-mail:)

Например, ссылка на этот текст зашифруется вот так: 9EEAi^^?@K5C]CF^82>6D^BF6DE^4CJAE^4:A96C^K2>6?2nURC@Ecf. Только опытный разгадывальщик по повторяющимся в начале текста двойкам символов сможет додуматься, что 9EEAi^^ может означать HTTP:⁄⁄ .

Квадрат Полибия

Полибий - греческий историк, полководец и государственный деятель, живший в III веке до н.э. Он предложил оригинальный код простой замены, который стал известен как «квадрат Полибия» (англ. Polybius square) или шахматная доска Полибия. Данный вид кодирования изначально применялся для греческого алфавита, но затем был распространен на другие языки. Буквы алфавита вписываются в квадрат или подходящий прямоугольник. Если букв для квадрата больше, то их можно объединять в одной ячейке.

Такую таблицу можно использовать как в шифре Цезаря. Для шифрования на квадрате находим букву текста и вставляем в шифровку нижнюю от неё в том же столбце. Если буква в нижней строке, то берём верхнюю из того же столбца. Для кириллицы можно использовать таблицу РОТ11 (аналог шифра Цезаря со сдвигом на 11 символов):

Буквы первой строки кодируются в буквы второй, второй - в третью, а третьей - в первую.

Но лучше, конечно, использовать «фишку» квадрата Полибия - координаты букв:

    Под каждой буквой кодируемого текста записываем в столбик две координаты (верхнюю и боковую). Получится две строки. Затем выписываем эти две строки в одну строку, разбиваем её на пары цифр и используя эти пары как координаты, вновь кодируем по квадрату Полибия.

    Можно усложнить. Исходные координаты выписываем в строку без разбиений на пары, сдвигаем на нечётное количество шагов, разбиваем полученное на пары и вновь кодируем.

Квадрат Полибия можно создавать и с использованием кодового слова. Сначала в таблицу вписывается кодовое слово, затем остальные буквы. Кодовое слово при этом не должно содержать повторяющихся букв.

Вариант шифра Полибия используют в тюрьмах, выстукивая координаты букв - сначала номер строки, потом номер буквы в строке.

Стихотворный шифр

Этот метод шифрования похож на шифр Полибия, только в качестве ключа используется не алфавит, а стихотворение, которое вписывается построчно в квадрат заданного размера (например, 10×10). Если строка не входит, то её «хвост» обрезается. Далее полученный квадрат используется для кодирования текста побуквенно двумя координатами, как в квадрате Полибия. Например, берём хороший стих «Бородино» Лермонтова и заполняем таблицу. Замечаем, что букв Ё, Й, Х, Ш, Щ, Ъ, Э в таблице нет, а значит и зашифровать их мы не сможем. Буквы, конечно, редкие и могут не понадобиться. Но если они всё же будут нужны, придётся выбирать другой стих, в котором есть все буквы.

РУС/LAT

Наверное, самый часто встречающийся шифр:) Если пытаться писать по-русски, забыв переключиться на русскую раскладку, то получится что-то типа этого: Tckb gsnfnmcz gbcfnm gj-heccrb? pf,sd gthtrk.xbnmcz yf heccre. hfcrkflre? nj gjkexbncz xnj-nj nbgf "njuj^ Ну чем не шифр? Самый что ни на есть шифр замены. В качестве кодовой таблицы выступает клавиатура.

Таблица перекодировки выглядит вот так:

Литорея

Литорея (от лат. littera - буква) - тайнописание, род шифрованного письма, употреблявшегося в древнерусской рукописной литературе. Известна литорея двух родов: простая и мудрая. Простая, иначе называемая тарабарской грамотой, заключается в следующем. Если «е» и «ё» считать за одну букву, то в русском алфавите остаётся тридцать две буквы, которые можно записать в два ряда - по шестнадцать букв в каждом:

Получится русский аналог шифра ROT13 - РОТ16 :) При шифровке верхнюю букву меняют на нижнюю, а нижнюю - на верхнюю. Ещё более простой вариант литореи - оставляют только двадцать согласных букв:

Получается шифр РОТ10 . При шифровании меняют только согласные, а гласные и остальные, не попавшие в таблицу, оставляют как есть. Получается что-то типа «словарь → лсошамь» и т.п.

Мудрая литорея предполагает более сложные правила подстановки. В разных дошедших до нас вариантах используются подстановки целых групп букв, а также числовые комбинации: каждой согласной букве ставится в соответствие число, а потом совершаются арифметические действия над получившейся последовательностью чисел.

Шифрование биграммами

Шифр Плейфера

Шифр Плейфера - ручная симметричная техника шифрования, в которой впервые использована замена биграмм. Изобретена в 1854 году Чарльзом Уитстоном. Шифр предусматривает шифрование пар символов (биграмм), вместо одиночных символов, как в шифре подстановки и в более сложных системах шифрования Виженера. Таким образом, шифр Плейфера более устойчив к взлому по сравнению с шифром простой замены, так как затрудняется частотный анализ.

Шифр Плейфера использует таблицу 5х5 (для латинского алфавита, для русского алфавита необходимо увеличить размер таблицы до 6х6), содержащую ключевое слово или фразу. Для создания таблицы и использования шифра достаточно запомнить ключевое слово и четыре простых правила. Чтобы составить ключевую таблицу, в первую очередь нужно заполнить пустые ячейки таблицы буквами ключевого слова (не записывая повторяющиеся символы), потом заполнить оставшиеся ячейки таблицы символами алфавита, не встречающимися в ключевом слове, по порядку (в английских текстах обычно опускается символ «Q», чтобы уменьшить алфавит, в других версиях «I» и «J» объединяются в одну ячейку). Ключевое слово и последующие буквы алфавита можно вносить в таблицу построчно слева-направо, бустрофедоном или по спирали из левого верхнего угла к центру. Ключевое слово, дополненное алфавитом, составляет матрицу 5х5 и является ключом шифра.

Для того, чтобы зашифровать сообщение, необходимо разбить его на биграммы (группы из двух символов), например «Hello World» становится «HE LL OW OR LD», и отыскать эти биграммы в таблице. Два символа биграммы соответствуют углам прямоугольника в ключевой таблице. Определяем положения углов этого прямоугольника относительно друг друга. Затем руководствуясь следующими 4 правилами зашифровываем пары символов исходного текста:

    1) Если два символа биграммы совпадают, добавляем после первого символа «Х», зашифровываем новую пару символов и продолжаем. В некоторых вариантах шифра Плейфера вместо «Х» используется «Q».

    2) Если символы биграммы исходного текста встречаются в одной строке, то эти символы замещаются на символы, расположенные в ближайших столбцах справа от соответствующих символов. Если символ является последним в строке, то он заменяется на первый символ этой же строки.

    3) Если символы биграммы исходного текста встречаются в одном столбце, то они преобразуются в символы того же столбца, находящимися непосредственно под ними. Если символ является нижним в столбце, то он заменяется на первый символ этого же столбца.

    4) Если символы биграммы исходного текста находятся в разных столбцах и разных строках, то они заменяются на символы, находящиеся в тех же строках, но соответствующие другим углам прямоугольника.

Для расшифровки необходимо использовать инверсию этих четырёх правил, откидывая символы «Х» (или «Q») , если они не несут смысла в исходном сообщении.

Рассмотрим пример составления шифра. Используем ключ «Playfair example», тогда матрица примет вид:

Зашифруем сообщение «Hide the gold in the tree stump». Разбиваем его на пары, не забывая про правило . Получаем: «HI DE TH EG OL DI NT HE TR EX ES TU MP». Далее применяем правила -:

    1. Биграмма HI формирует прямоугольник, заменяем её на BM.

    2. Биграмма DE расположена в одном столбце, заменяем её на ND.

    3. Биграмма TH формирует прямоугольник, заменяем её на ZB.

    4. Биграмма EG формирует прямоугольник, заменяем её на XD.

    5. Биграмма OL формирует прямоугольник, заменяем её на KY.

    6. Биграмма DI формирует прямоугольник, заменяем её на BE.

    7. Биграмма NT формирует прямоугольник, заменяем её на JV.

    8. Биграмма HE формирует прямоугольник, заменяем её на DM.

    9. Биграмма TR формирует прямоугольник, заменяем её на UI.

    10. Биграмма EX находится в одной строке, заменяем её на XM.

    11. Биграмма ES формирует прямоугольник, заменяем её на MN.

    12. Биграмма TU находится в одной строке, заменяем её на UV.

    13. Биграмма MP формирует прямоугольник, заменяем её на IF.

Получаем зашифрованный текст «BM ND ZB XD KY BE JV DM UI XM MN UV IF». Таким образом сообщение «Hide the gold in the tree stump» преобразуется в «BMNDZBXDKYBEJVDMUIXMMNUVIF».

Двойной квадрат Уитстона

Чарльз Уитстон разработал не только шифр Плейфера, но и другой метод шифрования биграммами, который называют «двойным квадратом». Шифр использует сразу две таблицы, размещенные по одной горизонтали, а шифрование идет биграммами, как в шифре Плейфера.

Имеется две таблицы со случайно расположенными в них русскими алфавитами.

Перед шифрованием исходное сообщение разбивают на биграммы. Каждая биграмма шифруется отдельно. Первую букву биграммы находят в левой таблице, а вторую букву - в правой таблице. Затем мысленно строят прямоугольник так, чтобы буквы биграммы лежали в его противоположных вершинах. Другие две вершины этого прямоугольника дают буквы биграммы шифртекста. Предположим, что шифруется биграмма исходного текста ИЛ. Буква И находится в столбце 1 и строке 2 левой таблицы. Буква Л находится в столбце 5 и строке 4 правой таблицы. Это означает, что прямоугольник образован строками 2 и 4, а также столбцами 1 левой таблицы и 5 правой таблицы. Следовательно, в биграмму шифртекста входят буква О, расположенная в столбце 5 и строке 2 правой таблицы, и буква В, расположенная в столбце 1 и строке 4 левой таблицы, т.е. получаем биграмму шифртекста ОВ.

Если обе буквы биграммы сообщения лежат в одной строке, то и буквы шифртекста берут из этой же строки. Первую букву биграммы шифртекста берут из левой таблицы в столбце, соответствующем второй букве биграммы сообщения. Вторая же буква биграммы шифртекста берется из правой таблицы в столбце, соответствующем первой букве биграммы сообщения. Поэтому биграмма сообщения ТО превращается в биграмму шифртекста ЖБ. Аналогичным образом шифруются все биграммы сообщения:

Сообщение ПР ИЛ ЕТ АЮ _Ш ЕС ТО ГО

Шифртекст ПЕ ОВ ЩН ФМ ЕШ РФ БЖ ДЦ

Шифрование методом «двойного квадрата» дает весьма устойчивый к вскрытию и простой в применении шифр. Взламывание шифртекста «двойного квадрата» требует больших усилий, при этом длина сообщения должна быть не менее тридцати строк, а без компьютера вообще не реально.

Полиалфавитные шифры

Шифр Виженера

Естественным развитием шифра Цезаря стал шифр Виженера. В отличие от моноалфавитных это уже полиалфавитный шифр. Шифр Виженера состоит из последовательности нескольких шифров Цезаря с различными значениями сдвига. Для зашифровывания может использоваться таблица алфавитов, называемая «tabula recta» или «квадрат (таблица) Виженера». На каждом этапе шифрования используются различные алфавиты, выбираемые в зависимости от буквы ключевого слова.

Для латиницы таблица Виженера может выглядеть вот так:

Для русского алфавита вот так:

Легко заметить, что строки этой таблицы - это ROT-шифры с последовательно увеличивающимся сдвигом.

Шифруют так: под строкой с исходным текстом во вторую строку циклически записывают ключевое слово до тех пор, пока не заполнится вся строка. У каждой буквы исходного текста снизу имеем свою букву ключа. Далее в таблице находим кодируемую букву текста в верхней строке, а букву кодового слова слева. На пересечении столбца с исходной буквой и строки с кодовой буквой будет находиться искомая шифрованная буква текста.

Важным эффектом, достигаемым при использовании полиалфавитного шифра типа шифра Виженера, является маскировка частот появления тех или иных букв в тексте, чего лишены шифры простой замены. Поэтому к такому шифру применить частотный анализ уже не получится.

Для шифрования шифром Виженера можно воспользоваться Онлайн-калькулятором шифра Виженера . Для различных вариантов шифра Виженера со сдвигом вправо или влево, а также с заменой букв на числа можно использовать приведённые ниже таблицы:

Шифр Гронсвельда

Книжный шифр

Если же в качестве ключа использовать целую книгу (например, словарь), то можно зашифровывать не отдельные буквы, а целые слова и даже фразы. Тогда координатами слова будут номер страницы, номер строки и номер слова в строке. На каждое слово получится три числа. Можно также использовать внутреннюю нотацию книги - главы, абзацы и т.п. Например, в качестве кодовой книги удобно использовать Библию, ведь там есть четкое разделение на главы, и каждый стих имеет свою маркировку, что позволяет легко найти нужную строку текста. Правда, в Библии нет современных слов типа «компьютер» и «интернет», поэтому для современных фраз лучше, конечно, использовать энциклопедический или толковый словарь.

Это были шифры замены, в которых буквы заменяются на другие. А ещё бывают , в которых буквы не заменяются, а перемешиваются между собой.

Шифрами замены называют такие шифры, шифрование с помощью которых осуществляется путем замены каждого символа исходного текста другими символами (шифрообозначениями), при этом порядок символов не меняется. Формально шифр замены можно описать так: каждой букве ос исходного текста ставится в соответствие некоторое множество символов М а, которое называют множеством шифрообозначений для буквы а. Таблица соответствий и порядок выбора шифрообозначения из множества символов являются ключом шифра замены.

Если множества состоят из одного элемента, то такой шифр называют шифром простой замены.

В качестве ключа в системе Цезаря используется таблица, состоящая из двух строк (первая строка - алфавит исходного сообщения, вторая строка - тот же алфавит, но со сдвигом на несколько букв; при этом алфавитный порядок букв сохраняется).

При шифровании каждой буквы исходного текста ее заменяют буквой, которая находится под ней во второй строке таблицы. Ключ такого шифра легко запомнить по первой букве второй строки. Процесс дешифрации выполняется в обратном порядке - каждую букву шифротекста находят во второй строке таблицы и заменяют на букву над ней (с первой строки). Число ключей такого шифра не превышает количество букв алфавита (для русскоязычных текстов Т = 33).

Шифрами сложной замены называют такие шифры, шифрование с помощью которых осуществляется путем замены каждого символа исходного текста другими символами (шифрообозначениями), при этом порядок символов не меняется. Шифры сложной замены называют многоалфавитными, так как для шифрования каждого символа исходного текста используют свой шифр простой замены. Многоалфавитная подстановка обеспечивает цикличное использование в соответствии с ключом нескольких алфавитов замены, использование которых определяется местом зашифровываемого символа в исходном тексте.

Такое шифрование приводит к изменению статистики повторяемости символов в шифротексте по сравнению с исходным текстом, что лишает криптоаналитиков важной информации при попытке вскрытия шифра.

Этот шифр сложной замены реализуется с помощью таблицы шифрования (квадрата) Вижинера. Эта таблица используется как для шифрования, так и для дешифрования текстов (рис. 5.1).

> Матрица букв

шифрограмм

Столбец ключа

Строка букв

открытого

Рис. 5.1. Таблица Вижинера

Верхнюю строку подчеркнутых символов используют для поиска очередной буквы исходного текста, крайний левый столбец чисел - соответствующий ей числовой ключ (если ключ - некоторая буква ключевой фразы, то ее берут из соседнего числовому ключу столбца). На пересечении выбранных строки и столбца находят букву замены для шифротекста.

Для того чтобы зашифровать исходное сообщение, его записывают в строку и под каждой его буквой записывают подряд буквы ключевой фразы или цифры числового ключа. Если ключ оказался короче исходного текста, его циклически повторяют.

Задача 5.5

Пусть необходимо зашифровать следующий открытый текст : «ТО BE OR NOT ТО BE THAT IS THE QUESTION», используя секретный ключ «RELATIONS».

Решение.

Разобьем процесс шифрования на следующие этапы.

1. Записываем секретный ключ над открытым текстом столько раз, сколько потребуется, чтобы длина ключа совпала с длиной открытого текста, т.е. получим периодический ключ.

  • 2. Чтобы зашифровать открытый текст с помощью полученного периодического ключа и таблицы замены, приведенной выше, необходимо:
    • найти букву, стоящую на пересечении строки, названием которой является очередная буква открытого текста, и столбца, названием которого является очередной символ периодического ключа;
    • записать полученный символ криптограммы;
    • повторять предыдущие пункты до тех пор, пока не будет зашифрован весь текст.

После шифрования получим криптограмму:

«КЗ МЕ НЕЕ ВВЬ КБ МЕ МРСЮ А1 ХЭЕ,Ю5ЕЕ78У».

Для расшифровки такой криптограммы используется следующий алгоритм.

  • 1. Необходимо найти столбец, названием которого является очередной символ секретного ключа.
  • 2. В этом столбце нужно найти строку, содержащую очередной символ криптограммы.
  • 3. В качестве очередного символа открытого текста надо записать название полученной строки.

Дешифрование выполняют аналогично - под строкой шифро-текста записывают ключ, при необходимости циклически его повторяя. Каждую пару символов, расположенных в одном столбце, заменяют буквой исходного текста: по букве ключа находят строку в таблице 3, затем в этой строке находят букву шифротекста, которая определяет столбец; исходный символ - первая буква столбца.

Простейшим из шифров замены является одноалфавитная подставновка , называемая также шифром простой замены .

Ключом такого шифра является взаимно однозначное отображение (подстановка ) F алфавита открытого текста (X ) в шифртекста (Y ): F: X Y. Зафиксируем нумерацию символов в алфавитах X и Y : X = { ,, … }, Y = { , , … }.

Тогда отображение F фактически задается перестановкой порядка n = |X | = |Y |: при шифровании символ xi открытого текста заменяется на символ шифртекста.

Эта перестановка может быть задана либо таблицей, либо с помощью формулы. При задании с помощью формулы значение представляется в виде выражения, зависящего от i .

Пример. Типичным примером шифра замены является шифр Цезаря . Этот шифр реализует следующее преобразование текста, записанного с помощью латинского алфавита: каждая буква открытого текста заменяется буквой, стоящей на три позиции позже нее в алфавите (при этом алфавит считается записанным по кругу, то есть после буквы ‘z’ идет буква ‘a’).

Открытый текст ‘secret’ будет преобразован в ‘vhfuhw’. Ключ для шифра Цезаря можно задать в виде следующей таблицы (рис. 3). В первой строке записаны буквы открытого текста, во второй - соответствующие им буквы шифртекста.

Шифр Цезаря можно описать и в виде формулы. Для этого пронумеруем буквы латинского алфавита числами от 0 до 25: a = 0, b = 1, …, z = 25. Тогда правило замены можно описать следующим образом: буква с номером i i+3 (mod 26 ), где операция ‘mod 26’ означает вычисление остатка от деления на 26.

Возможен обобщенный вариант шифра Цезаря, при котором буква с номером i заменяется на букву с номером i +k (mod 26). В этом случае ключом шифра является число k .

Еще больше обобщив этот метод, придем к семейству аффинных шифров . Для алфавита из n символов { , , …, } аффинным шифром называется процедура, заменяющая входной символ на символ , где j = k ·i +l (mod n ).

Шифры простой замены в настоящее время не используются, поскольку их стойкость невелика. Методы взлома таких шифров основаны на анализе частотности отдельных символов и их комбинаций. Дело в том, что в любом языке различные буквы и комбинации из двух, трех или большего количества букв имеют характерные частоты повторений в текстах. Например, в текстах на русском языке чаще всего встречается буква ‘О ’, затем, в порядке убывания частоты, идут буквы ‘Е ’ (считая, что ‘Е ’ и ‘Ё ’ - одна и та же буква), ‘А ’, ‘И ’,

‘Т’ и т. д. Для английского языка аналогичная последовательность самых частых букв: ‘E’, ‘T’, ‘A’, ‘I’, ‘N’. Самым частым символом в текстах является, однако, не буква, а символ пробела.



Становится ясно, что при использовании шифра простой замены частота повторений зашифрованных символов в шифртексте совпадает с частотой повторений соответствующих исходных символов в открытом тексте. Это позволяет достаточно легко вскрыть такой шифр. Более тонкие характеристики (учет сочетаемости различных букв) позволяют даже автоматизировать процесс взлома.

Для того чтобы увеличить стойкость шифров замены, применяют многоалфавитную замену .

Процедура шифрования для многоалфавитной замены включает набор подстановок {, , …, } и функцию - распределитель (k, i), задающую последовательность применения подстановок .

При шифровании i-го символа открытого текста применяется подстановка с номером (k,i), где k - ключ шифрования.

Частным случаем многоалфавитной замены является шифр Виженера. Формально этот шифр можно описать следующим образом.

В качестве ключа шифрования выберем набор из m целых чисел:

k = (, , …, ). Процедуру преобразования открытого текста t = (, , …) в шифртекст c = (, , …) построим на основе обобщенного шифра Цезаря:

= + (mod 26) , = + (mod 26) , и т.д. Когда будут использованы все m компонент ключа k, для шифрования (m+1) -й буквы снова возьмем , и т.д. Фактически, в качестве ключа шифрования используется бесконечная последовательность, образованная периодическим повторением исходного набора: , , …, , , , …, , , , … Такую последовательность принято называть гаммой.

Взломать шифр многоалфавитной замены немного сложнее, чем шифры простой замены, но тоже достаточно легко. Такой шифр на самом деле представляет собой одновременное применение m шифров простой замены (обобщенный шифр Цезаря), причем часть исходного текста, состоящая из букв , , , … шифруются с использованием «ключа» ki (i=1, …, m).

Если известен период гаммы (т.е. число m ), то к каждой такой части можно применить любой из методов взлома шифров простой замены. Если период гаммы не известен, то задача усложняется. Но и для этих случаев разработаны эффективные методы взлома. Эти методы позволяют с достаточной вероятностью определить период гаммы, после чего задача сводится к взлому шифра гаммирования с известным периодом.

Как было указано выше, основой для атак на шифры замены является анализ частот вхождений символов в шифртекст. Для того чтобы затруднить взлом шифра замены, можно попытаться скрыть частотные свойства исходного текста. Для необходимо, чтобы частоты появления разных символов тексте совпадали.

Такие шифры замены называются гомофоническими .

Простейшим вариантом гомофонического шифра является следующий. Предположим, что нам известны частоты вхождений символов в открытый текст. Пусть fi

В своей работе «Математическая теория секретной связи» Клод Шеннон обобщил накопленный до него опыт разработки шифров.

Оказалось, что даже в сложных шифрах в качестве типичных компонентов можно выделить шифры замены, шифры перестановки или их сочетания.

14.1.Шифр замены

Наиболее известными и часто используемыми шифрами являются шифры замены . Они характеризуются тем, что отдельные части сообщения (буквы, слова, ...) заменяются на какие-либо другие буквы, числа, символы и т.д. При этом замена осуществляется так, чтобы потом по шифрованному сообщению можно было однозначно восстановить передаваемое сообщение.

При шифровании заменой (подстановкой ) символы шифруемого текста заменяются символами того же или другого алфавита с заранее установленным правилом замены. В шифре простой замены каждый символ исходного текста заменяется символами того же алфавита одинаково на всем протяжении текста.

Шифр замены является простейшим, наиболее популярным шифром. Примерами являются: шифр Цезаря , « цифирная азбука» Петра Великого и « пляшущие человечки» А. Конан-Дойля .

Шифр замены осуществляет преобразование замены букв или других «частей» открытого текста на аналогичные «части» шифрованного текста .

Увеличив алфавиты, т.е. объявив «части» буквами, можно любой шифр замены свести к замене букв.

Дадим математическое описание шифра замены .

Пусть: X алфавит открытого текста, а Y - алфавит шифрованног о текста, состоящие из одинакового числа символов .

Пусть также: g: X Y взаимнооднозначное отображение X в Y . Каждой буквех алфавита X сопоставляется однозначно определенная буква у алфавита Y , которую обозначаем символом g(х), причем разным буквам сопоставляются разные буквы .

Тогда шифр замены действует так: открытый текст x 1 x 2 ...x n преобразуется в шифрованный текст g 1 )g(x 2 )...g(x n ).

В криптографии рассматриваются 4 типа замены :

    моноалфавитная;

    гомофоническая;

    полиалфавитная;

    полиграммная.

Моноалфавитная замена

При данном методе каждому символу алфавита открытого текста ставится в соответствие один символ зашифрованного текста (из этого же алфавита).

Общая формула моноалфавитной замены выглядит следующим образом:

y i =(k 1 x i +k 2 )mod n,

Примером этого метода является шифр под названием Атбаш.

Правило шифрования состоит в замене i - ой буквы алфавита буквой с номером n= i + 1 , где n - число букв в алфавите. Пример для латинского алфавита выглядит так:

Исходный текст: abcdefghijklmnopqrstuvwxyz

Зашифрованный текст: ZYXWVUTSRQPONMLKJIHGFEDCBA

Гомофоническая замена

Особенность данного метода заключается в том, что одному символу открытого текста ставит в соответствие несколько символов шифртекста , что позволяет уйти от статистической взаимосвязи.

Примером данного шифра является книжный шифр - вид шифра, в котором каждый элемент открытого текста (каждая буква или слово) заменяется на указатель (например, номер страницы, строки и столбца) аналогичного элемента в дополнительном тексте-ключе.

Полиграммная замена

В полиграммных шифрах подстановки буквы открытого текста заменяются не по одной, а группами . Первое преимущество такого способа заключается в том, что распределение частот групп букв значительно более равномерное, чем отдельных символов. Во-вторых, для продуктивного частотного анализа требуется больший размер зашифрованного текста, так как число различных групп букв значительно больше, чем просто алфавит.

Полиалфавитные подстановки

Для повышения стойкости шифра используют так называемые полиалфавитные подстановки, которые для замены используют несколько алфавитов шифротекста.

Известно несколько разновидностей полиалфавитной подстановки, наиболее известными из которых являются:

    одноконтурная (обыкновенная и монофоническая)

    и многоконтурная.

При полиалфавитной одноконтурной обыкновенной подстановке для замены символов исходного текста используются несколько алфавитов, причем смена алфавитов осуществляется последовательно и циклически, т.е. первый символ заменяется соответствующим символом первого алфавита, второй – символом второго алфавита и т. д. до тех пор, пока не будут использованы все выбранные алфавиты. После этого использование алфавитов повторяется.

Сам процесс шифрования осуществляется следующим образом:

    Под каждой буквой шифруемого теста записываются буквы ключа. Ключ при этом повторяется необходимое число раз;

    Каждая буква шифруемого текста заменяется по подматрице буквами, находящимися на пересечении линий, соединяющих буквы шифруемого текста в первой строке подматрицы и находящихся под ними букв ключа;

    Полученный текст может разбиваться на группы по несколько знаков.

Частным случаем рассмотренной полиалфавитной замены является так называемая монофоническая замена .

Шифрование осуществляется так же, как и при простой замене с той лишь разницей, что после шифрования каждого знака соответствующий ему столбец алфавитов циклически сдвигается вверх на одну позицию.

Полиалфавитная многоконтурная замена заключается в том, что для шифрования используется несколько наборов (контуров) алфавитов используемых циклически, причем каждый контур в общем случае имеет свой индивидуальный период применения. Этот период, исчисляется, как правило, количеством знаков, после зашифровки которых меняется контур алфавитов. Частным случаем многоконтурной полиалфавитной подстановки является замена по таблице Вижинера, если для шифрования используется несколько ключей, каждый из которых имеет свой период применения.