Проекты по физике. Температура и температурные шкалы

  • Дата: 11.10.2019

История изобретения термометра благодаря переводам наследия древних ученых сохранилась хорошо.

Так описано, что греческий ученый и врач Гален, сделал первую попытку измерения температуры в 170 году н.э. Он документально описал стандартную температуру кипящей воды и льда.

Измерители нагретости

Концепция измерения температуры является достаточно новой. Термоскоп — по существу, измеритель нагретости без шкалы был предшественником современного термометра. Были несколько изобретателей, работающих на термоскопе в 1593 году, но наиболее известным является Галилео Галилей, итальянский изобретатель, который также улучшил (но не изобрел) термоскоп.

Термоскоп может показать различия в нагретости, что позволяет наблюдателям знать, если что-то становилось теплее или холоднее. Тем не менее, термоскоп не может обеспечить точную температуру в градусах. В 1612 году итальянский изобретатель Санторио добавил свою числовую шкалу на термоскоп и она была использована, чтобы измерять температуру человека. Но по-прежнему не хватало стандартизированной шкалы и точности.

Изобретение термометра принадлежит немецкому физику Габриелю Фаренгейту который совместно с датским астрономом Олаф Кристенсен Рёмером разработал измеритель на основе и с использованием спирта.

В 1724 году они ввели шкалу стандартной температуры, которая носит его имя Фаренгейта, масштаба который был использован для записи изменений нагретости в точной форме. Его шкала разделена на 180 градусов между точками замерзания и кипения воды. 32° F замерзания воды и 212 ° F кипения воды, 0° F была основана на нагретости равной смеси воды, льда и соли. Также за основу этой знаковой системы взята температура человеческого тела. Первоначально, нормальная нагретость человеческого тело была 100° F, но с тех пор была скорректирована до 98,6 ° F. Равная смесь воды, льда и хлорида аммония использована для установки в 0° F.

Фаренгейт демонстрировал термометр на спиртовой основе в 1709 году до открытия ртутного аналога, который оказался более точным.

В 1714 Фаренгейт разработал первый современный термометр — ртутный термометр с более точными измерениями. Известно, что ртуть расширяется или сжимается при повышении физической величины нагретости или падает. Это можно считать первым современным ртутным термометром со стандартизированной шкалой.

История изобретения термометра отмечает, что Габриель Фаренгейт немецкий физик изобрел спиртовой термометр в 1709 году и ртутный термометр в 1714 году.

Виды температурных шкал

В современном мире находят применение определенные виды температурных шкал :

1. Шкала Фаренгейта является одной из трех основных температурных знаковых систем, используемых сегодня с двумя другими Цельсия и Кельвина. Фаренгейт это стандарт, используемый для измерения температуры в Соединенных Штатах, но большая часть остального мира использует Цельсия.

2. Вскоре после открытия Фаренгейта шведский астроном Андерс Цельсий озвучил свою шкалу, которая упоминается как Цельсия. Она делится на 100 градусов, отделяющих точку кипения и замерзания. Оригинальный масштаб установленный Цельсием 0 в качестве точки кипения воды и 100 в качестве точки замерзания, был изменен вскоре после изобретения шкалы и стал: 0° C – замерзания, 100° C – точка кипения.

Термин Цельсия был принят в 1948 году международной конференцией по вопросам мер и весов и масштаб является предпочтительным как датчик температуры для научных приложений, а также в большинстве стран мира кроме Соединенных Штатов.

3. Следующую шкалу изобрел Лорд Кельвин из Шотландии с его датчиком в 1848 году, известная сейчас как шкала Кельвина. Она основывался на идее абсолютной теоретической нагретости, при которой все вещества не имеют тепловой энергии. Там нет отрицательных чисел по шкале Кельвина, 0 K самая низкая температура возможная в природе.

Абсолютный ноль по Кельвину означает минус 273,15 ° С и минус 459,67 F. Шкала Кельвина широко используется в научных приложениях. Единицы по шкале Кельвина имеют тот же размер, как и у шкалы Цельсия, за исключением того, что шкала Кельвина устанавливает самую .

Коэффициенты пересчета видов температур

Фаренгейта в градусы Цельсия: вычтите 32, а затем умножить на 5, а затем разделить на 9;

Цельсия в градусы Фаренгейта: умножьте на 9, делим на 5, затем добавить 32;

Фаренгейта в Кельвина: вычтите 32, умножить на 5, разделить на 9, а затем добавить 273,15;

Кельвина в градусы Фаренгейта: вычтите 273,15, умножить на 1,8, а затем добавить 32;

Кельвина в градусы Цельсия: добавить 273;

Цельсия в Кельвина: вычтите 273.

Термометры используют материалы, которые изменяются в некотором роде, когда они нагреваются или охлаждаются. Самыми распространенные ртутные или спиртовые, где жидкость расширяется, когда нагревается и сжимается при охлаждении, поэтому длина столба жидкости длиннее или короче в зависимости от нагретости. Современные термометры калиброванные по виду температур как по Фаренгейту (используются в США), по Цельсию (во всем мире) и Кельвина (используется в основном учеными).

В настоящее время рекомендована к применению Международ­ная практическая температурная шкала МПШТ-68. Единицей тем­пературы утвержден Кельвин (К). Температуру, определяемую по этой шкале, называют термодинамической Т (например, T = 300 К).

Допускается использовать также температуру t по шкале Цель­сия, определяемую выражением

t = Т - 273,15. (2)

Эта температура выражается в градусах Цельсия °С (например, t = 20 °С). Кельвин и градус Цельсия имеют одинаковую величину и оба равны 1/100 разности температур кипения и замерзания воды при атмосферном давлении.

Шкалы Кельвина и Цельсия отличаются только точкой отсчета: нуль в шкале Кельвина сдвинут вниз на 273,15 К по сравнению со шкалой Цельсия. Температура по шкале Цельсия может быть отри­цательной t < 0 °С, тогда как термодинамическая температура всег­да положительна Т > 0. При приближении термодинамической тем­пературы к нулю (T > 0) внутри тела молекулы постепенно замед­ляют свое колебательное движение около состояния равновесия, и при Т = 0 оно прекращается.

Своеобразными «хранителями» температурных шкал являются постоянные температуры фазового равновесия между двумя или тремя фазами вещества: температуры кипения и затвердевания, температуры тройных точек. Эти значения температур называются опорными, реперными точками. Значения основных реперных точек МПШТ-68 приведены в табл. 1.

Таблица1. Основные реперные точки МПШТ-68

Равновесное состояние

Тройная точка водорода

Тройная точка кислорода

Точка кипения кислорода

Точка замерзания воды

Тройная точка воды

Точка кипения воды

Точка затвердевания цинка

Точка затвердевания серебра

Точка затвердевания золота

За рубежом до сих пор довольно часто применяются темпера­турные шкалы Фаренгейта (t , °F) и Ренкина (T, °R). Они выража­ются следующим образом через температуры Цельсия и Кельвина соответственно:

t °С = (t ° F - 32)/1,8; (3)

T = T ° R / 1,8 . (4)

4. Методы измерения температуры

Температура является мерой кинетической энергии составляю­щих тело молекул. Кинетическую же энергию составляю­щих тело молекул измерить невозможно. Поэтому для измерения температуры применяют косвенные методы, в которых используют зависимость каких-либо свойств вещества от температуры и по изменению этих свойств судят об изменении тем­пературы. Такими свойствами являются объем вещества, давление насыщенного пара, электрическое сопротивление, термоэлектродви­жущая сила, тепловое излучение и др.

Стеклянные жидкостные термометры. Принцип действия стек­лянных жидкостных термометров основан на температурном расши­рении жидкостей. Для того чтобы изменение объема жидкости при изменении температуры было отчетливо видно, обычно к заключен­ному в резервуар объему жидкости примыкает трубка с тонким ка­налом - капилляром. Свободная поверхность жидкости находится в этом капилляре, в результате чего небольшие температурные изме­нения объема жидкости вызывают значительное отчетливо наблюда­емое перемещение свободной поверхности мениска в капилляре. При известных температурах t 1 и t 2 определяются два положения мениска, после чего расстояние между ними делится на равные от­резки, числом равные t 1 - t 2 . Таким образом градуируется термо­метр, и только после нанесения этих делений на шкалу он может быть использован для измерения.

Стеклянные термометры можно применять для измерения темпе­ратур в интервале от -200 до +750 °С, но обычно до температур, не превышающих 150-200 °С. Для их заполнения, в зависимости от диапа­зона измеряемых температур, используются различные, обычно подкра­шиваемые жидкости: ртуть, толуол, этиловый спирт и т.д.

Недостатки жидкостных термометров: сравнительно большой размер, необходи­мость визуального определения температуры и невозможность представления показаний в виде электрического сигнала.

Термометры сопротивления. В термо­метрах сопротивления используется свойство изменения электрического сопротивления металлов при изменении его температуры. Термометры сопротивления применяются для измерения широкого диапазона темпе­ратур. Платиновый термометр сопротивле­ния является эталонным прибором для из­мерения температур в интервале от 13,81 до 903,89 К. Конструкция платинового термометра сопротивления представлена на рис. 2. Платиновая проволока диамет­ром 0,05-0,10 мм, свитая в спираль, уло­жена на кварцевом каркасе геликоидной формы. К концам спирали припаяны вы­воды из платиновой проволоки. Все ус­тройство помещено в защитную кварцевую трубку. Сопротивление платинового тер­мометра измеряют обычно потенциометрическим способом (принципиальная схе­ма приведена на рис. 3).

Рис. 2. Платиновый термометр сопротивления: а - чувствительная часть, б - головка термометра; 1 - защитная кварцевая трубка; 2 - кварцевый каркас; 3 - спираль из платиновой проволоки; 4 - платиновые выводы; 5 - контактные винты; 6 - изоляционная прокладка

Вместо платины в термометрах сопротивления можно применять и другие металлы или полупроводниковые материалы. Основным недостатком термометров сопротивления являются достаточно большие габариты чувствительной части.

Рис. 3. Принципиальная схема измерения сопротивления платинового термометра:

1 - потенциометр

Термоэлектрические термометры. Термоэлектрические термо­метры (термопары) получили широкое распространение как в лабо­раторной практике, так и в промышленном производстве. Это объясняется их уникальными свойствами.

Термопара представляет собой два разнородных металлических проводника (проволочки различных металлов), составляющих общую электрическую цепь. Если температуры мест соединений (спаев) про­водников t 1 и t 2 неодинаковы, то возникает термоЭДС и по цепи проте­кает электрический ток. Причиной возникновения термоЭДС является различная плотность свободных электронов в различных металлах при одинаковой температуре. ТермоЭДС тем больше, чем больше разность температур спаев. По величине термоЭДС судят о разности температур спаев.

Электродами термопары являются проволока диаметром 0,1-3,2 мм. Используются следующие термопары: платинородий-платиновая (от 0 до 1300 °С), платинородиевая (от 300 до 1600 °С), вольфрамрениевая (от 0 до 2200 °С), хромель-алюмелевая (от -200 до 1000 °С), хромель-копелевая (от -50 до 600 °С), медь-копелевая (от -200 до 100 °С) и другие.

При измерении температуры один спай цепи термопары, так на­зываемый холодный спай, находится при 0 °С (в тающем льде в со­суде Дьюара), а другой - горячий спай - в среде, температуру которой нужно измерить. Таблицы термоЭДС термопар составлены именно для этого случая. Если по каким-либо причинам не удается поместить холодный спай в среду с температурой 0 °С и он нахо­дится при комнатной температуре (например при 20 °С), то в этом случае возникающая термоЭДС соответствует разности температур горячего и холодного спаев и при определении температуры нужно ввести поправку на холодный спай. Для этого необходимо измерен­ную термоЭДС сложить с термоЭДС, соответствующей температуре холодного спая (20 °С), и по полученному значению определить температуру при помощи таблиц.

По схеме соединения различают термопары с одним и двумя хо­лодными спаями.

Рис.4. Типы термопар: 1 –горячий спай; 2 – холодный спай

Схема термопары с одним холодным спаем изображена на рис. 4,а. Вся цепь выполняется из двух разнородных проводников. В цепь включен милливольтметр для измерения термоЭДС.

Схема с двумя холодными спаями представлена на рис. 4,6. Отличие этой схемы от первой заключается в том, что в цепь термопары вводятся медные провода. Медные провода изображены сплошной линией. Такая схема обычно и используется на практике ввиду того что измерительный прибор может находиться на значительном удалении от места измерения температуры.

Существенным достоинством термопар и термометров сопротивления является то, что они преобразуют значения измеряемой температуры в величину электрического сигнала. Это дает возможность передавать сигнал на большие расстояния, а также использовать его в качестве управляющего сигнала в системах автоматического регулирования и управления.

Инфракрасные термометры. Инфракрасные термометры содержат высокочувствительный датчик, который преобразует энергию инфракрасного (теплового) излучения поверхности объекта в электрический сигнал. Затем эта информация преобразуется в температурные данные, выводимые в цифровом виде на дисплей. Количественное соотношение между интенсивностью теплового излучения поверхности и ее температурой устанавливается законом Стефана-Больцмана для теплового излучения. Диапазон измерения температуры таким прибором от -50 о С до 1500 о С.

Инфракрасный термометр позволяет измерять температуру поверхности бесконтактным способом и на значительном расстоянии. Это делает его особенно удобным в тех случаях, когда другие методы измерения температуры непригодны. Например, если нужно измерить температуру движущегося предмета, поверхности под напряжением или труднодоступной поверхности. Прибор обычно изготавливается в форме пистолета. Для выбора точки измерения температуры на поверхности используется лазерный целеуказатель.

Материал данной статьи дает представление о таком важном понятии как температура. Дадим определение, рассмотрим принцип изменения температуры и схему построения температурных шкал.

Что такое температура

Определение 1

Температура – это скалярная физическая величина, описывающая состояние термодинамического равновесия макроскопической системы тел.

Понятие температуры также применяют в качестве физической величины, определяющей степень нагретости тела, однако лишь такой трактовки для понимания смысла термина недостаточно. Все физические понятия находятся в связи с определенными фундаментальными законами и наделяются смыслом только в соответствии с этими законами. В данном случае термин температура связан с понятием теплового равновесия и с законом макроскопической необратимости.

Явление термодинамического равновесия тел, составляющих систему, говорит о наличии одинаковой температуры этих тел. Произвести замер температуры можно лишь косвенно, взяв за основу зависимость от температуры таких физических свойств тел, которые можно измерить непосредственно.

Определение 2

Вещества или тела, применяемые для получения значения температуры, называют термометрическими .

Допустим, два теплоизолированных тела приведены в тепловой контакт. Одно тело передаст другому поток энергии: запустится процесс теплопередачи. При этом тело, отдающее тепло, обладает соответственно большей температурой, чем тело, «принимающее» поток тепла. Очевидно, что через некоторое время процесс теплопередачи остановится и наступит тепловое равновесие: предполагается, что температуры тел выравниваются относительно друга, их значения будут находится где-то в интервале между исходными значениями температур. Таким образом, температура служит некоторой меткой теплового равновесия. Получается, что любая величина t , удовлетворяющая требованиям:

  1. t 1 > t 2 , когда происходит теплопередача от первого тела ко второму;
  2. t 1 " = t 2 " = t , t 1 > t > t 2 , при установлении теплового равновесия может приниматься за температуру.

Также отметим, что тепловое равновесие тел подчинено закону транзитивности.

Определение 3

Закон транзитивности : когда два тела находятся в равновесии с третьим, то и между собой они пребывают в тепловом равновесии.

Важной чертой указанного определения температуры является его неоднозначность. Выбрав по-разному величины, отвечающие установленным требованиям (что отразится на способах измерения температуры), возможно получить несовпадающие шкалы температур.

Определение 4

Температурная шкала – это способ деления на части интервала температуры.

Разберем пример.

Пример 1

Общеизвестным устройством для измерения температуры является термометр. Для рассмотрения возьмем термометры различного устройства. Первый представлен ртутным столбиком в капилляре термометра, и значение температуры здесь определяется длиной этого столбика, отвечающей условиям 1 и 2 , указанным выше.

И еще один способ измерить температуру: используя термопару – электрическую цепь с гальванометром и двумя спаями разнородных металлов (рисунок 1 ).

Рисунок 1

Один спай находится в среде с фиксированной температурой (в нашем примере это тающий лед), другой – в среде, температуру которой необходимо определить. Здесь признаком температуры является ЭДС термопары.

Указанные способы измерения температуры не дадут одинаковых результатов. И для перехода одной температуры к другой следует построить градуировочную кривую, которая установит зависимость ЭДС термопары от длины ртутного столбика. В этом случае равномерная шкала ртутного термометра преобразуется в неравномерную шкалу термопары (или наоборот). Равномерные шкалы измерения температур ртутного термометра и термопары создают две абсолютно различные температурные шкалы, на которых тело в одном и том же состоянии будет иметь различные температуры. Также возможно рассмотреть одинаковые по устройству термометры, но имеющие разные "термические тела" (к примеру, ртуть и спирт): мы не будем наблюдать совпадения температурных шкал и в этом случае. График зависимости длины ртутного столбика от длины спиртового столбика не будет линейным.

Из вышесказанного можно сделать вывод, что понятие температуры, базирующееся на законах теплового равновесия, неоднозначно. Подобная температура является эмпирической, зависит от способа измерения. За «нуль» шкалы эмпирической температуры принимается произвольная точка. Согласно определению эмпирической температуры, физический смысл несет лишь разность температур или ее изменение. Любая эмпирическая температурная шкала приводится в вид термодинамической температурной шкалы при использовании поправок, которые учтут характер связи термометрического свойства с термодинамической температурой.

Для того, чтобы построить температурную шкалу для измерения, двум числовым значениям температуры присваивают две фиксированные реперные точки. После этого разность числовых значений, присвоенных реперным точкам, делится на выбранное произвольным образом необходимое количество частей, получая в результате единицу измерения температуры.

За исходные значения, используемые в качестве начала отсчета и единицы измерения, принимают температуры перехода химически чистых веществ из одного агрегатного состояния в другое, к примеру, температуру плавления льда t 0 и кипения воды t k при нормальном атмосферном давлении (П а ≈ 10 5 П а) . Величины t 0 и t k имеют разные значения в различных видах шкал измерения температуры:

  • Согласно шкале Цельсия (стоградусная шкала): температура кипения воды t k = 100 ° C , температура плавления льда t 0 = 0 ° С. В шкале Цельсия температура тройной точки воды равна 0 , 01 ° С при давлении 0 , 06 а т м.
Определение 5

Тройная точка воды - такие температура и давление, при которых могут существовать в равновесии одновременно все три агрегатных состояния воды: жидкое, твердое (лед) и пар.

  • Согласно шкале Фаренгейта: температура кипения воды t k = 212 ° F ; температура плавления льда t 0 = 32 ° С.

Разница температур, выраженных в градусах по шкале Цельсия и шкале Фаренгейта, нивелируется согласно следующему выражению:

t ° C 100 = t ° F - 32 180 или t ° F = 1 , 8 ° C + 32 .

Ноль на этой шкале определен как температура замерзания смеси воды, нашатыря и соли, взятых в пропорции 1: 1: 1 .

  • Согласно шкале Кельвина: температура кипения воды t k = 373 К; температура плавления льда t 0 = 273 К. Здесь температура отсчитывается от абсолютного нуля (t = 273 , 15 ° С) и ее называют термодинамической или абсолютной температурой. Т = 0 К – такому значению температуры соответствует абсолютное отсутствие тепловых колебаний.

Значения температур по шкале Цельсия и по шкале Кельвина связаны между собой согласно следующему выражению:

T (K) = t ° C + 273 , 15 ° C .

  • Согласно шкале Реомюра: температура кипения воды t k = 80 ° R ; температура плавления льда t 0 = 0 ° R . В термометре Реомюра использовался спирт; на данный момент шкала почти не используется.

Температуры, выраженные в градусах Цельсия и градусах по Реомюру, связаны так:

1 ° C = 0 , 8 ° R .

  • Согласно шкале Ранкина: температура кипения воды t k = 671 , 67 ° R a ; температура плавления льда t 0 = 491 , 67 ° R a . Начало шкалы соответствует абсолютному нулю. Количество градусов между реперными точками замерзания и кипения воды в шкале Ранкина идентично шкале Фаренгейта и равно 180 .

Температуры по Кельвину и Ранкину связаны выражением:

° R a = ° F + 459 , 67 .

Градусы по Фаренгейту возможно перевести в градусы по Ранкину согласно формуле:

° R a = ° F + 459 , 67 .

Наиболее применима в быту и технических устройствах шкала Цельсия (единица шкалы – градус Цельсия, обозначаемый как ° C).

В физике же используют термодинамическую температуру, которая не просто удобна, но и несет глубокую физическую смысловую нагрузку, поскольку определена как средняя кинетическая энергия молекулы. Единица термодинамической температуры - градус Кельвина (до 1968 г.) или сейчас просто Кельвин (К) , являющийся одной из основных единиц в С И. Температура T = 0 К называется абсолютным нулем температуры, как уже упоминалось выше.

Вообще современная термометрия опирается на шкалу идеального газа: за термометрическую величину принимают давление. Шкала газового термометра абсолютна (T = 0 , p = 0) . При решении практических задач чаще всего приходится применять именно эту шкалу температур.

Пример 2

Принято, что комфортная для человека температура в помещении находится в интервале от + 18 ° С до + 22 ° С. Необходимо рассчитать границы интервала температуры комфорта согласно термодинамической шкале.

Решение

Возьмем за основу соотношение T (K) = t ° C + 273 , 15 ° C .

Произведем расчет нижней и верхней границ температуры комфорта по термодинамической шкале:

T = 18 + 273 ≈ 291 (K) ; T = 22 + 273 ≈ 295 (K) .

Ответ: границы интервала температуры комфорта по термодинамической шкале находятся в интервале от 291 К до 295 К.

Пример 3

Необходимо определить, при какой температуре показания термометров по шкале Цельсия и по шкале Фаренгейта будут одинаковы.

Решение

Рисунок 2

Возьмем за основу соотношение t ° F = 1 , 8 t ° C + 32 .

По условию задачи температур равны, тогда возможно составить следующее выражение:

x = 1 , 8 x + 32 .

Определим из полученной записи переменную x:

x = - 32 0 , 8 = - 40 ° C .

Ответ: при температуре - 40 ° С (или - 40 ° F) показания термометров по шкалам Цельсия и Фаренгейта будут одинаковы.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http : www . allbest . ru /

Температурные шкалы

Измерять температуру человечество научилось примерно 400 лет назад. Но первые приборы, напоминающие нынешние термометры, появились только в ХVIII веке. Изобретателем первого градусника стал ученый Габриэль Фаренгейт. Всего в мире было изобретено несколько разных температурных шкал, одни из них были более популярны и используются до сих пор, другие постепенно вышли из употребления.

Температурные шкалы - это системы температурных значений, которые возможно сопоставить между собой. Так как температура не относится к величинам, подлежащим непосредственному измерению, то значение ее связывают с изменением температурного состояния какого-либо вещества (например, воды). На всех температурных шкалах, как правило, фиксируют две точки, соответствующие температурам перехода выбранного термометрического вещества в разные фазы. Это так называемые реперные точки. Примерами реперных точек может служить точка закипания воды, точка твердения золота и т. п. Одну из точек принимают за начало отсчета. Интервал между ними делят на определенное количество равных отрезков, являющихся единичными. За единицу измерения температуры повсеместно принят один градус. температура шкала прибор

Наиболее популярные и получившие самое широкое распространение в мире шкалы температур - шкала Цельсия и Фаренгейта.

Рассмотрим по порядку имеющиеся шкалы и попробуем сравнить их с точки зрения удобства использования и практической пользы. Наиболее известных шкал пять:

1. Шкала Фаренгейта была изобретена Фаренгейтом, немецким ученым. В один из холодных зимних дней 1709 года ртуть в термометре ученого опустилась до очень низкой температуры, которую он предложил принять за нуль по новой шкале. Другой реперной точкой стала температура человеческого тела. Температурой замерзания воды по его шкале стали +32°, а температурой кипения +212°. Шкала Фаренгейта не является особенно продуманной и удобной. Ранее она широко применялась в англоязычных странах, в настоящее время - практически только в США.

2. По шкале Реомюра , изобретенной французским ученым Рене де Реомюром в 1731 году, нижней реперной точкой служит точка замерзания воды. Шкала основана на использовании спирта, который расширяется при нагревании, за градус была принята тысячная часть объема спирта в резервуаре и трубке при нуле. Сейчас эта шкала вышла из употребления.

3. По шкале Цельсия (предложена шведом Андерсом Цельсием в 1742 году) за нуль принята температура смеси льда и воды (температура, при которой тает лед), другая основная точка - температура, при которой вода закипает. Интервал между ними решено было поделить на 100 частей, и одна часть принята за единицу измерения - градус Цельсия. Эта шкала более рациональна, чем шкала Фаренгейта и шкала Реомюра, и сейчас используется повсеместно.

4. Шкала Кельвина изобретена в 1848 году лордом Кельвином (английский ученый У. Томсон). На ней нулевая точка соответствовала самой низкой возможной температуре, при которой прекращается движение молекул вещества. Это значение было теоретически вычислено при изучении свойств газов. По шкале Цельсия это значение соответствует приблизительно - 273°С, т.е. нуль по Цельсию равняется 273 К. Единицей измерения новой шкалы стал один кельвин (первоначально именовался «градус Кельвина»).

5. Шкала Ранкина (по фамилии шотландского физика У. Ранкина) имеет тот же принцип, что у шкалы Кельвина, а размерность ту же, что шкала Фаренгейта. Эта система практически не получила распространения.

Значения температур, которые дает нам шкала Фаренгейта и Цельсия, могут быть легко переведены друг в друга. При переводе «в уме» значений по Фаренгейту в градусы Цельсия нужно исходную цифру уменьшить на 32 единицы и умножить на 5/9. Наоборот (из шкалы Цельсия в Фаренгейта) - умножить исходное значение на 9/5 и добавить 32. Для сравнения: температура абсолютного нуля по Цельсию - 273,15 °, по Фаренгейту- 459,67°.

И змерение температуры

Измерение температуры основано на зависимости какой-либо физической величины (например, объема) от температуры. Эта зависимость и используется в температурной шкале термометра -- прибора, служащего для измерения температуры.

В 1597 году Галилео Галилей создал термоскоп. Термоскоп представлял собой небольшой стеклянный шарик с припаянной стеклянной трубкой, опущенной в воду. Когда шарик охлаждался, вода в трубке под поднималась. При потеплении уровень воды в трубки опускался вниз. Недостатком прибора было отсутствие шкалы и зависимость показаний от атмосферного давления.

Позднее флорентийские ученые усовершенствовали термоскоп Галилея, добавив к нему шкалу из бусин и откачав из шарика воздух. В 1700 году воздушный термоскоп был преобразован ученым Торричелли. Прибор был перевернут шариком вниз, сосуд с водой удалили, а в трубку налили спирт. Действие прибора основывалось на расширении спирта при нагревании - теперь показания не зависели от атмосферного давления. Это был один из первых жидкостных термометров. Термометр Торричелли был без шкалы.

В 1714 году голландский ученый Фаренгейт сделал ртутный термометр. Он поместил термометр в смесь льда и поваренной соли и обозначил высоту столбика ртути за 0 градусов. Следующей точкой у Фаренгейта была температура человеческого тела - 96 градусов. Сам изобретатель определял вторую точку как «температуру под мышкой здорового англичанина»

В 1730 году французский физик Р. Реомюр предложил спиртовой термометр с постоянными точками таяния льда (0 °R) и кипения воды (80 °R). Примерно в это же время шведский астроном Андерс Цельсий использовал ртутный термометр Фаренгейта с собственной шкалой, где температура кипения воды была принята за 0 градусов, а таяния льда - за 100 градусов.

Температура является важным параметром, определяющим не только протекание технологического процесса, но и свойства вещества. Для измерения температуры в системе единиц СИ принята температурная шкала с единицей температуры Кельвин (К). Начальной точкой этой шкалы является абсолютный нуль (0 К). Для технологических измерений часто применяют температурную шкалу с единицей температуры градус Цельсия (°С)

Для измерения температуры используют различные первичные преобразователи, отличающиеся способом преобразования температуры в промежуточный сигнал. В промышленности наибольшее применение получили следующие первичные преобразователи: термометры расширения, манометрические термометры, термометры сопротивления, термопары (термоэлектрические пирометры) и пирометры излучения. Все они, за исключением пирометров излучения, в процессе эксплуатации находятся в контакте с измеряемой средой.

Размещено на Allbest.ru

...

Подобные документы

    Температура - параметр, характеризующий тепловое состояние вещества. Температурные шкалы, приборы для измерения температуры и их основные виды. Термодинамический цикл поршневого двигателя внутреннего сгорания с подводом тепла при постоянном давления.

    контрольная работа , добавлен 25.03.2012

    Основные шкалы измерения температуры. Максимальное и минимальное значение в условиях Земли. Температура среды обитания человека. Температурный фактор на территории Земли. Распределение температуры в различных областях тела в условиях холода и тепла.

    доклад , добавлен 18.03.2014

    Средства измерения температуры. Характеристики термоэлектрических преобразователей. Принцип работы пирометров спектрального отношения. Приборы измерения избыточного и абсолютного давления. Виды жидкостных, деформационных и электрических манометров.

    учебное пособие , добавлен 18.05.2014

    Состояние системы мер и измерительной техники в различные исторические периоды. Измерение температуры, давления и расхода жидкости с применением различных методов и средств. Приборы для измерения состава, относительной влажности и свойств вещества.

    курсовая работа , добавлен 11.01.2011

    Понятие термоэлектрического эффекта; технические термопары, их типы. Характеристика и конструкция ТЭП, исполнение, назначение, условия эксплуатации, недостатки. Измерение температуры, пределы допускаемых отклонений термоЭДС от номинального значения.

    контрольная работа , добавлен 30.01.2013

    Характеристика величины, характеризующей тепловое состояние тела или меры его "нагретости". Причина Броуновского движения. Прародитель современных термометров, их виды. Единицы измерения температуры, типы шкал. Эксперимент по изготовлению термоскопа.

    презентация , добавлен 14.01.2014

    Теория температурных полей: пространственно-временные распределения температуры и концентрации растворов. Модель физико-химического процесса взаимодействия соляной кислоты и карбонатной составляющей скелета. Методы расчётов полей температуры и плотности.

    Определение линейного теплового потока методом последовательных приближений. Определение температуры стенки со стороны воды и температуры между слоями. График изменения температуры при теплопередаче. Число Рейнольдса и Нусельта для газов и воды.

    контрольная работа , добавлен 18.03.2013

    Разработка и совершенствование технологий измерения температуры с использованием люминесцентных, контактных и бесконтактных методов. Международная температурная шкала. Создание спиртовых, ртутных, манометрических и термоэлектрических термометров.

    курсовая работа , добавлен 07.06.2014

    Основные сведения о температуре и температурных шкалах, возможность проводить измерение. Использование на практике термометров и требования к средствам измерений, входящих в состав государственных эталонов соответствующих диапазонов температуры.

Измерять температуру человечество научилось примерно 400 лет назад. Но первые приборы, напоминающие нынешние термометры, появились только в Х V III веке. Изобретателем первого градусника стал ученый Габриэль Фаренгейт. Всего в мире было изобретено несколько разных температурных шкал, одни из них были более популярны и используются до сих пор, другие постепенно вышли из употребления.

Температурные шкалы - это системы температурных значений, которые возможно сопоставить между собой. Так как температура не относится к величинам, подлежащим непосредственному измерению, то значение ее связывают с изменением температурного состояния какого-либо вещества (например, воды). На всех температурных шкалах, как правило, фиксируют две точки, соответствующие температурам перехода выбранного термометрического вещества в разные фазы. Это так называемые реперные точки. Примерами может служить точка закипания воды, точка твердения золота и т. п. Одну из точек принимают за начало отсчета. Интервал между ними делят на определенное количество равных отрезков, являющихся единичными. За единицу повсеместно принят один градус.

Наиболее популярные и получившие самое широкое распространение в мире шкалы температур - шкала Цельсия и Фаренгейта. Впрочем, рассмотрим по порядку имеющиеся шкалы и попробуем сравнить их с точки зрения удобства использования и практической пользы. Наиболее известных шкал пять:

1. Шкала Фаренгейта была изобретена Фаренгейтом, немецким ученым. В один из холодных зимних дней 1709 года ртуть в термометре ученого опустилась до очень низкой температуры, которую он предложил принять за нуль по новой шкале. Другой реперной точкой стала температура человеческого тела. Температурой замерзания воды по его шкале стали +32°, а температурой кипения +212°. Шкала Фаренгейта не является особенно продуманной и удобной. Ранее она широко применялась в в настоящее время - практически только в США.

2. По шкале Реомюра, изобретенной французским ученым Рене де Реомюром в 1731 году, нижней реперной точкой служит точка замерзания воды. Шкала основана на использовании спирта, который расширяется при нагревании, за градус была принята тысячная часть объема спирта в резервуаре и трубке при нуле. Сейчас эта шкала вышла из употребления.

3. По шкале Цельсия (предложена шведом в 1742 году) за нуль принята температура смеси льда и воды (температура, при которой тает лед), другая основная точка - температура, при которой вода закипает. Интервал между ними решено было поделить на 100 частей, и одна часть принята за единицу измерения - градус Цельсия. более рациональна, чем шкала Фаренгейта и шкала Реомюра, и сейчас используется повсеместно.

4. Шкала Кельвина изобретена в 1848 году лордом Кельвином (английский ученый У. Томсон). На ней нулевая точка соответствовала самой низкой возможной температуре, при которой прекращается движение молекул вещества. Это значение было теоретически вычислено при изучении свойств газов. По шкале Цельсия это значение соответствует приблизительно - 273°С, т. е. нуль по Цельсию равняется 273 К. Единицей измерения новой шкалы стал один кельвин (первоначально именовался «градус Кельвина»).

5. (по фамилии шотландского физика У. Ранкина) имеет тот же принцип, что у шкалы Кельвина, а размерность ту же, что шкала Фаренгейта. Эта система практически не получила распространения.

Значения температур, которые дает нам шкала Фаренгейта и Цельсия, могут быть легко переведены друг в друга. При переводе «в уме» (т. е. быстро, не пользуясь специальными таблицами) значений по Фаренгейту в градусы Цельсия нужно исходную цифру уменьшить на 32 единицы и умножить на 5/9. Наоборот (из шкалы Цельсия в Фаренгейта) - умножить исходное значение на 9/5 и добавить 32. Для сравнения: температура по Цельсию - 273,15 °, по Фаренгейту- 459,67°.