Карбоангидраза 2 повышает скорость образования угольной кислоты. Ингибиторы карбоангидразы

  • Дата: 15.10.2023
  • Сфигмограмма сонной артерии в норме:
  • Флебосфигмограмма яремной вены в норме:
  • 205. Понятие о белковом минимуме и белковом оптимуме. Белки полноценные и неполноценные.
  • 206. Калорические коэффициенты питательных веществ.
  • 207. Суточная потребность в солях и воде.
  • 208. Значение витаминов в питании.
  • 209. Сущность процесса пищеварения. Функциональная система, поддерживающая постоянный уровень питательных веществ в крови.
  • Функциональная система, поддерживающая уровень питательных веществ в крови
  • 210. Методы изучения функций пищеварительных желез. Сущность созданного и. П. Павловым хронического метода исследования, его преимущества.
  • 211. Роль полости рта в процессе пищеварения. Состав и свойства слюны.
  • 212. Схемы рефлекторной дуги безусловного слюноотделительного рефлекса. Приспособительный характер слюноотделения к различным пищевым и отвергаемым веществам.
  • 213. Общая характеристика процессов пищеварения в желудке. Состав и свойства желудочного сока.
  • 215. Состав и свойства панкреатического сока.
  • 216. Регуляция панкреатической секреции: а) сложно-рефлекторная фаза; б) гуморальная фаза.
  • 217. Роль желчи в пищеварении. Состав и свойства желчи.
  • 218. Регуляция желчеобразования. Основные пищевые продукты, усиливающие желчеобразование.
  • 219. Механизм желчевыделения, его рефлекторная и гуморальная регуляции.
  • 220. Кишечный сок, его состав и свойства.
  • 221.Виды сокращений мускулатуры желудочно-кишечного тракта, их характеристика. Регуляция моторной функции желудочно-кишечного тракта.
  • 222.Всасывание основных пищевых веществ, механизм всасывания, его регуляция.
  • 223.Пищевой центр. Современные представления о механизмах возникновения голода, жажды, насыщения.
  • 224.Принципы организации функциональной системы дыхания.
  • 225. Дыхание, его основные этапы.
  • 226. Механизм внешнего дыхания. Биомеханика вдоха и выдоха.
  • 227. Давление в плевральной полости и его происхождение и роль в механизме внешнего дыхания. Изменения давления в плевральной полости в разные фазы дыхательного цикла.
  • 228. Жизненная ёмкость лёгких и составляющие её компоненты. Методы их определения. Остаточный объём.
  • 230. Состав атмосферного и выдыхаемого воздуха. Альвеолярный воздух как внутренняя среда организма. Понятие о парциальном давлении газов.
  • 231. Газообмен в лёгких. Парциальное давление газов (о2и со2) в альвеолярном воздухе и напряжение газов в крови. Основные закономерности перехода газов через мембрану.
  • 232. Обмен газов между кровью и тканями. Напряжение о2и со2в крови, тканевой жидкости и клетках.
  • 233. Транспорт о2кровью, кривая диссоциации оксигемоглобина, её характеристика, кислородная ёмкость крови.
  • 234. Транспорт углекислоты кровью, значение карбоангидразы, взаимосвязь транспорта о2и со2.
  • 235. Иннервация дыхательных мышц.
  • 236. Дыхательный центр. Современные представления о структуре и локализации. Автоматия дыхательного центра.
  • 237. Зависимость деятельности дыхательного центра от газового состава крови.
  • 238. Роль хеморецепторов в регуляции дыхания. Роль механорецепторов в регуляции дыхания.
  • 239.Роль углекислоты в регуляции дыхания. Механизм первого вдоха новорождённого.
  • 240.Механизм периодической деятельности дыхательного центра. Теории возникновения периодической деятельности дыхательного центра.
  • (Спросить на консультации)
  • 241. Влияние на дыхательный центр раздражения различных рецепторов и отделов центральной нервной системы.
  • 242. Условно-рефлекторная регуляция дыхания. Защитные дыхательные рефлексы.
  • 243. Дыхание при мышечной работе. Дыхание при пониженном атмосферном давлении (высотная болезнь). Дыхание при повышенном атмосферном давлении (кессонная болезнь).
  • 244. Искусственное дыхание. Периодическое дыхание. Патологические типы дыхания.
  • 245. Почки и их функция. Особенности кровоснабжения нефрона.
  • 246. Процесс мочеобразования: гломерулярная фильтрация, канальцевая реабсорбция, канальцевая секреция.
  • 247. Осмотическое разведение и концентрирование мочи.
  • 248. Роль почек в осморегуляции и волюморегуляции. Роль почек в регуляции ионного состава крови. Роль почек в регуляции кислотно-основного состояния.
  • 249. Экскреторная функция почек. Инкреторная функция почек. Метаболическая функция почек.
  • 250. Нервная регуляция деятельности почек.
  • 251. Диурез. Состав мочи. Мочевыведение и мочеиспускание. Возрастные особенности.
  • 252. Гемодиализ. Искусственная почка.
  • 253. Понятие об иммунитете. Классификация иммунитета. Специфический и неспецифический иммунитет.
  • 254. Клеточный и гуморальный иммунитет. Центральные и периферические органы иммунной системы.
  • 234. Транспорт углекислоты кровью, значение карбоангидразы, взаимосвязь транспорта о2и со2.

    Углекислый газ транспортируется следующими путями:

    Растворенный в плазме крови - около 25 мл / л.

    Связанный с гемоглобином (карбгемоглобин) - 45 мл / л.

    В виде солей угольной кислоты - букарбонаты калия и натрия в плазме крови - 510 мл / л.

    Таким образом, в состоянии покоя кровь транспортирует 580 мл углекислого газа в 1 л. Итак, основной формой транспорта СО2 является бикорбонаты плазмы, образующихся благодаря активному протеканию карбоангидразнои реакции.

    В эритроцитах содержится фермент карбоангидраза (КГ), который катализирует взаимодействие углекислого газа с водой с образованием угольной кислоты, распадается с образованием бикарбонатного иона и протона. Бикарбонат внутри эритроцита взаимодействует с ионами калия, выделяемых из калиевой соли гемоглобина при восстановлении последнего. Так внутри эритроцита образуется бикарбонат калия. Но бикарбонатно ионы образуются в значительной концентрации и поэтому по градиенту концентрации (в обмен на ионы хлора) поступают в плазму крови. Так в плазме образуется бикарбонат натрия. Протон, образовавшегося при диссоциации угольной кислоты, реагирует с гемоглобином с образованием слабой кислоты ННb.

    В капиллярах легких эти процессы идут в обратном направлении. С ионов водорода и бикарбонатных ионов образуется угольная кислота, которая быстро распадается на углекислый газ и воду. Углекислый газ удаляется наружу.

    Итак, роль эритроцитов в транспорте углекислоты такова:

    образование солей угольной кислоты;

    образования карбгемоглобин.

    Диффузия газов в тканях подчиняется общим законам (объем диффузии прямо пропорционален площади диффузии, градиента напряжения газов в крови и тканях). Площадь диффузии увеличивается, а толщина диффузного слоя уменьшается при увеличении количества функционирующих капилляров, что имеет место при повышении уровня функциональной активности тканей. В этих же условиях возрастает градиент напряжения газов за счет снижения в активно работающих органах Ро2 и повышения Рсо2 (газовый состав артериальной крови, как и альвеолярного воздуха остается неизменным!). Все эти изменения в активно работающих тканях способствуют увеличению объема диффузии О2 и СО2 в них. Потребление О2 (СО2) по спирограмму определяют по изменению (сдвигу) кривой вверх за единицу времени (1 минуту).

    235. Иннервация дыхательных мышц.

    Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного мозга , иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровнеIII-IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположеныв передних рогах (III-XII) грудных сегментов спинного мозга.

    236. Дыхательный центр. Современные представления о структуре и локализации. Автоматия дыхательного центра.

    Информация о состоянии кислородно-углекислого баланса в организме поступает в дыхательный центр, который представляет нейронную организацию центральной нервной системы, определяющую функцию дыхания.

    В анатомическом смысле дыхательный центр – это совокупность нейронов в локальной зоне центральной нервной системы, без которой дыхание становится невозможным.

    Такой центр находится в ретикулярной формации продолговатого мозга в областидна IV желудочка .

    Он состоит из двух отделов:

    1) центр вдоха (инспираторный отдел);

    2) центр выдоха (экспираторный отдел).

    Нейроны бульбарного центра обладают автоматией и находятся в реципрокных взаимоотношениях между собой.

    Несовершенность координации дыхательного акта центрами продолговатого мозга была доказана методом перерезок. Так после отделения продолговатого мозга от вышележащих отделов чередование вдохов и выдохов сохраняется, но длительность и глубина дыханий становится нерегулярной.

    В физиологическом смысле дыхательный центр – это совокупность нейронов, расположенных на различных уровнях центральной нервной системы (от спинного мозга до коры головного мозга), которые обеспечивают координированное ритмическое дыхание, то есть делают функцию дыхания более совершенной.

    В целом, регуляция активности дыхательного центра может быть представлена тремя уровнями:

    1) на уровне спинного мозга располагаются центры диафрагмальных и межрёберных нервов, обусловливающие сокращение дыхательных мышц. Однако этот уровень регуляции дыхания не может обеспечить ритмическую смену фаз дыхательного цикла, так как большое количество афферентных импульсов от дыхательного аппарата непосредственно направляются в продолговатый мозг, то есть минуя спинной мозг.

    2) на уровне продолговатого мозга и варолиевого моста находится основной дыхательный центр, который перерабатывает разнообразные афферентные импульсы, идущие от дыхательного аппарата, а также от основных сосудистых рефлексогенных зон. Этот уровень регуляции обеспечивает ритмическую смену фаз дыхания и активность спиномозговых мотонейронов, аксоны которых иннервируют дыхательную мускулатуру;

    3) на уровне верхних отделов головного мозга , включая кору головного мозга, осуществляются адекватные приспособительные реакции системы дыхания к изменяющимся условиям окружающей среды.

    Ритмические импульсы от дыхательного центра продолговатого мозга поступают по нисходящим двигательным путям к мотонейронам дыхательных мышц спинного мозга.

    Мотонейроны диафрагмальных нервов находятся в передних рогах серого веществаIII - IV шейных сегментов .

    Мотонейроны межрёберных нервов расположены в передних рогахгрудного отдела спинного мозга.

    Отсюда возбуждение поступает к дыхательной мускулатуре (к диафрагме и межрёберным мышцам).

    Мотонейроны спинного мозга

    Бульбарный дыхательный центр

    Мотонейроны спинного мозга получают от проприорецепторов мышц грудной клетки сигналы о степени их растяжения при вдохе.

    Эти сигналы могут изменять число вовлечённых в активность мотонейронов и, таким образом, определяют особенности дыхания, осуществляя регуляцию дыхания на уровне спинного мозга

    Бульбарный дыхательный центр получает афферентные импульсы от механорецепторов лёгких, дыхательных путей и дыхательных мышц, от хемо- и прессорецепторов сосудистых рефлексогенных зон.

    Для нормальной деятельности бульбо-понтинного дыхательного центра необходима постоянная информация о состоянии внутренней среды организма и самих органов дыхания.

    Нисходящие нервные влияния на дыхательный центр оказывают верхние отделы головного мозга , включая корковые нейроны. Так, эмоциональные возбуждения, охватывающие структуры,лимбико-ретикулярного комплекса и в первую очередьгипоталамическую область , распространяются в нисходящем направлении и вызывают изменение деятельности дыхательного центра.

    Гипоталамус также оказывает влияния при изменениях во внешней среде, изменении метаболизма, а также как высший центр вегетативных регуляций.

    Речь, относящаяся к высшим мозговым функциям коры человека, возможна на основе дыхательных движений, вызывающих прохождение воздуха через голосовой аппарат.

    Поэтому во время речи к дыхательному центру приходят влияния, подстраивающие его деятельность для необходимых речевых реакций.

    Одновременно дыхательный центр управляет тем объёмом лёгочной вентиляции, который необходим для поддержания дыхательного гомеостаза. Поэтому дыхание в условиях речи становится апериодическим.

    На роль коры в регуляции дыхания указывает возможность произвольного контроля дыхания, когда человек может сознательно изменить дыхание: сделать его более глубоким или поверхностным, частым или редким, произвести задержку дыхания на определённое время.

    Таким образом, на примере особенностей дыхательного центра наблюдаются общие принципы организации любых нервных центров, в частности:

    1) принцип изоморфизма (принципиально однотипная структурная организация);

    2) принцип иерархичности (многоуровневое расположение центрального представительства);

    3) принцип субординации (соподчинение нервных центров, когда высшие центры модулируют работу низших и, чем выше уровень центра, тем более сложную регуляцию он обеспечивает).

    I Карбоангидра́за (синоним: карбонатдегидратаза, карбонатгидролиаза)

    фермент, катализирующий обратимую реакцию гидратации диоксида углерода: СО 2 + Н 2 О ⇔ Н 2 СО 3 ⇔ Н + + НСО 3 . Содержится в эритроцитах, клетках слизистой оболочки желудка, коре надпочечников, почках, в незначительных количествах - в ц.н.с., поджелудочной железе и других органах. Роль К. в организме связана с поддержанием кислотно-щелочного равновесия (Кислотно-щелочное равновесие), транспортом СО 2 , образованием соляной кислоты слизистой оболочкой желудка. Активность К. в крови в норме довольно постоянна, но при некоторых патологических состояниях она резко меняется. Повышение активности К. в крови отмечается при анемиях различного генеза, нарушениях кровообращения II-III степени, некоторых заболеваниях легких (бронхоэктазах, пневмосклерозе), а также при беременности. Снижение активности этого фермента в крови происходит при ацидозе почечного генеза, гипертиреозе. При внутрисосудистом гемолизе активность К. появляется в моче, в то время как в норме она отсутствует. Контролировать активность К. в крови целесообразно во время оперативных вмешательств на сердце и легких, т.к. она может служить показателем адаптивных возможностей организма, а также при терапии ингибиторами карбоангидразы - гипотиазидом, диакарбом.

    Для определения активности К. применяют радиологические, иммуноэлектрофоретические, колориметрические и титриметрические методы. Определение производят в цельной крови, взятой с гепарином, или в гемолизированных эритроцитах. Для клинических целей наиболее приемлемы колориметрические методы определения активности К. (например, модификации метода Бринкмана), основанные на установлении времени, необходимого для сдвига рН инкубационной смеси с 9,0 до 6,3 в результате гидратации СО 2 . Воду, насыщенную углекислотой, смешивают с индикаторно-буферным раствором и определенным количеством сыворотки крови (0,02 мл ) или взвеси гемолизированных эритроцитов. В качестве индикатора используют феноловый красный. По мере диссоциации молекул угольной кислоты все новые молекулы СО 2 подвергаются ферментативной гидратации. Для получения сравнимых результатов реакция должна протекать всегда при одинаковой температуре, наиболее удобно поддерживать температуру тающего льда - 0°. Время контрольной реакции (спонтанной реакции гидратации СО 2) в норме составляет 110-125 с . В норме при определении этим методом активность К. в среднем равна 2-2,5 условным единицам, а в пересчете на 1 млн. эритроцитов 0,458 ± 0,006 условным единицам (за единицу активности К. принимают увеличение скорости катализируемой реакции в 2 раза).

    Библиогр.: Клиническая оценка лабораторных тестов, под ред. Н.У. Тица, пер. с англ., с. 196, М., 1986.

    II Карбоангидра́за

    • - фермент, катализирующий обратимую реакцию образования угольной кислоты из диоксида углерода и воды. Ингибиторы К. применяют в медицине для лечения нек-рых сердечно-сосудистых и др. заболеваний...

      Естествознание. Энциклопедический словарь

    • - I Карбоангидра́за фермент, катализирующий обратимую реакцию гидратации диоксида углерода: СО2 + Н2О ⇔ Н2СО3 ⇔ Н+ + НСО3...

      Медицинская энциклопедия

    • - цинксодержащий фермент группы углерод-кислород-лиаз, катализирующий обратимую реакцию расщепления угольной кислоты до двуокиси углерода и воды...

      Большой медицинский словарь

    • - угольная ангидраза, карбонат-гидролиаза, фермент класса лиаз, катализирующий обратимое образование угольной кислоты из двуокиси углерода и воды: CO2 + H2O ↔ H2CO3. К. - металлопротеид, содержащий Zn...

    КАРБОАНГИДРАЗА (карбонат-дегидратаза, карбонат - гидролиаза , устаревшее название - угольная ангидраза ; КФ 4.2.1.1) - фермент, катализирующий обратимую реакцию расщепления угольной кислоты до углекислоты и воды; является одним из наиболее распространенных и наиболее активных ферментов организма человека, участвует в осуществлении таких функций организма, как транспорт CO 2 , образование соляной кислоты в желудке и поддержание кислотно-щелочного равновесия. Величина активности К. в крови человека служит диагностическим тестом при ряде заболеваний.

    Углекислый газ, образующийся в процессе тканевого дыхания в тканевых капиллярах, под действием К. эритроцитов переходит в H 2 CO 3 (H + + HCO 3 -); ионы H + связываются гемоглобином (см.), а ионы HCO 3 - в виде бикарбоната переносятся с кровью в легкие. В легочных капиллярах под действием К. углекислый газ высвобождается из H 2 CO 3 и затем удаляется из организма. К. почек участвует в процессе реабсорбции воды в почечных канальцах. Снижение ее каталитической активности приводит к алкалозу мочи (т. е. повышению значений ее pH) и полиурии. К., обеспечивая поддержание кислотно-щелочного равновесия, оказывает существенное влияние на возбудимость и проводимость нервной ткани. К. катализирует также гидролиз ряда эфиров и гидратацию альдегидов. Фермент относится к классу лиаз, подклассу углерод-кислород-лиаз.

    Впервые К. обнаружена в эритроцитах Мелдремом (N. Meldrum) и Рафтоном (F. J. Boughton) в 1932 г. Активность К. определяется, кроме эритроцитов, в обкладочных клетках слизистой оболочки желудка, в клетках коры надпочечников и почек, а также в клетках ц. н. с., поджелудочной железы, в сетчатке и хрусталике глаза и некоторых других органах человека.

    К. млекопитающих является металлоферментом (цинк-протеидом).

    На 1 моль ферментного белка приходится 1 г-атом цинка; Zn 2+ может быть замещен на Co 2+ без изменения активности фермента. Ионы Mn 2+ , Fe 2+ и Ni 2+ в этом отношении гораздо менее активны.

    Растительные К. по своим свойствам отличаются от К., выделенных из тканей животных и человека.

    К. эритроцитов человека имеет три изофермента (см.) - А, В и С, из которых последний отличается наиболее высокой активностью. Соотношение этих изоферментов при различных патол, состояниях меняется (в норме оно равно 5%, 83% и 12% соответственно).

    К. ингибируется большинством моновалентных анионов, цианидом, сульфидами, азидами, фенолами, ацетонитрилом. Сильными ингибиторами К. животных и микроорганизмов являются некоторые сульфаниламиды и их производные, напр, ацетазоламид - диакарб (см.), который используется в медицине в качестве мочегонного и противосудорожного средства, а также при лечении глаукомы.

    Активность К. в крови здоровых людей довольно постоянна, однако при некоторых патол, состояниях она резко изменяется. Так, напр., при анемиях различной этиологии увеличивается удельная активность К. крови, увеличивается она и при нарушениях кровообращения II - III степени, а также при некоторых поражениях легких (бронхоэктатическая болезнь, пневмосклероз). При внутрисосудистом гемолизе активность К. определяется в моче, где в норме она отсутствует* У больных с пониженной кислотностью желудочного сока отмечают низкую активность К. в крови, а при повышенной кислотности активность К. в крови несколько увеличена.

    Принимая во внимание широкое использование в клинике фармакол, препаратов, являющихся ингибиторами К. (гипотиазида, диакарба и др.), очевидна целесообразность систематического контроля за активностью К. в крови больных, принимающих такие препараты.

    Активность К. в клин, лабораториях определяют при помощи метода Бринкмана (см. Бринкмана метод) в модификации E. М. Крепса и Е. Ю. Ченыкаевой, а также микро-методом А. А. Покровского и В. А. Тутельяна, основанного на измерении времени, необходимого для сдвига pH с 9,0 до 6,3 в результате гидратации CO 2 под действием К. исследуемой пробы крови. В норме активность К., определяемая этим методом, равна 2,01 ± 0,08 ед., а в пересчете на 1 млн. эритроцитов 0,458 ± 0,006 ед. (за 1 ед. активности К. принимают ускорение катализируемой реакции в 2 раза по сравнению с некатализируемой при стандартных условиях: температура 0-1°, время 100-110 сек., разведение крови 1: 1000).

    Библиография Крепе E. М. Дыхательный фермент - угольная ангидраза и его значение в физиологии и патологии, Усп. совр, биол., т. 17, в. 2, с. 125, 1944; Л е-нинджер А. Биохимия, пер. с англ., с. 177, М., 1974; L i n d s k о g S. a. o. Carbonic anhydrase, в кн.: Enzymes, ed. by P. D. Boyer, v. 5, p. 587, N. Y.-L., 1971, bibliogr.; Scrutton M. Assay of enzymes of carbon dioxide metabolism, в кн.: Meth. microbiol., ed. by J. R. Norris a. D. W. Ribbons, v. 6A, p. 479, L.-N. Y., 1971.

    Г. А. Кочетов.

    Первые школьные уроки об устройстве человеческого организма знакомят с главными «обитателями крови: красные клетки – эритроциты (Er, RBC), определяющие цвет за счет , в них содержащегося, и белые (лейкоциты), присутствие которых на глаз не видно, поскольку на окраску они не влияют.

    Эритроциты человека, в отличие от животных, не имеют ядра, но прежде чем потерять его, они должны пройти путь от клетки-эритробласта, где только начинается синтез гемоглобина, достигнуть последней ядерной стадии – , накапливающего гемоглобин, и превратиться в зрелую безъядерную клетку, основным компонентом которой является красный кровяной пигмент.

    Чего только люди не делали с эритроцитами, изучая их свойства: и вокруг земного шара пытались их обернуть (получилось 4 раза), и в монетные столбики укладывать (52 тысячи километров), и площадь эритроцитов сопоставлять с площадью поверхности тела человека (эритроциты превзошли все ожидания, их площадь оказалась выше в 1,5 тысячи раз).

    Эти уникальные клетки…

    Еще одна важная особенность эритроцитов заключается в их двояковогнутой форме, но если бы они были шарообразными, то общая площадь их поверхности была бы меньше на 20% настоящей. Однако способности эритроцитов заключаются не только в величине их общей площади. Благодаря двояковогнутой дисковидной форме:

    1. Эритроциты способны переносить больше кислорода и углекислого газа;
    2. Проявлять пластичность и свободно проходить через узкие отверстия и изогнутые капиллярные сосуды, то есть, для молодых полноценных клеток в кровяном русле практически нет препятствий. Способность проникать в самые отдаленные уголки организма теряется с возрастом эритроцитов, а также при их патологических состояниях, когда изменяется их форма и размер. Например, сфероциты, серповидные, гири и груши (пойкилоцитоз), не обладают такой высокой пластичностью, не могут пролезать в узкие капилляры макроциты, а тем более, мегалоциты (анизоцитоз), поэтому и задачи свои измененные клетки выполняют не столь безупречно.

    Химический состав Er представлен в большей степени водой (60%) и сухим остатком (40%), в котором 90 – 95% занимает красный пигмент крови – , а остальные 5 – 10% распределены между липидами (холестерин, лецитин, кефалин), белками, углеводами, солями (калий, натрий, медь, железо, цинк) и, конечно, ферментами (карбоангидраза, холинэстераза, гликолитические и пр.).

    Клеточные структуры, которые мы привыкли отмечать в других клетках (ядро, хромосомы, вакуоли), у Er отсутствуют за ненадобностью. Живут эритроциты до 3 – 3,5 месяцев, затем состариваются и с помощью эритропоэтических факторов, которые выделяются при разрушении клетки, подают команду, что их пора заменить новыми – молодыми и здоровыми.

    Начало свое эритроцит берет от предшественников, которые, в свою очередь, происходят от стволовой клетки. Воспроизводятся красные кровяные тельца, если в организме все нормально, в костном мозге плоских костей (череп, позвоночник, грудина, ребра, тазовые кости). В случаях, когда по каким-либо причинам костный мозг не может их производить (поражение опухолью), эритроциты «вспоминают», что во внутриутробном развитии этим занимались другие органы (печень, вилочковая железа, селезенка) и заставляют организм начать эритропоэз в забытых местах.

    Сколько их должно быть в норме?

    Общее количество эритроцитов, содержащееся в организме в целом, и концентрация красных клеток, курсирующих по кровяному руслу – понятия разные. В общее число входят клетки, которые еще пока не покинули костный мозг, ушли в депо на случай непредвиденных обстоятельств или пустились в плавание для выполнения своих непосредственных обязанностей. Совокупность всех трех популяций эритроцитов носит название – эритрон . В эритроне содержится от 25 х 10 12 /л (Тера/литр) до 30 х 10 12 /л красных кровяных клеток.

    Норма эритроцитов в крови взрослых людей отличается по половому признаку, а у детей в зависимости от возраста. Таким образом:

    • Норма у женщин колеблется в пределах 3,8 – 4,5 х 10 12 /л, соответственно, гемоглобина у них тоже меньше;
    • Что для женщины является нормальным показателем, то у мужчин называется анемией легкой степени, поскольку нижняя и верхняя граница нормы эритроцитов у них заметно выше: 4,4 х 5,0 х 10 12 /л (то же самое касается и гемоглобина);
    • У детей до года концентрация эритроцитов постоянно меняется, поэтому для каждого месяца (у новорожденных – каждого дня) существует своя норма. И если вдруг в анализе крови повышены эритроциты у ребенка двух недель отроду до 6,6 х 10 12 /л, то это нельзя расценивать как патологию, просто у новорожденных такая норма (4,0 – 6,6 х 10 12 /л).
    • Некоторые колебания наблюдаются и после года жизни, но нормальные значения не особо отличаются от таковых у взрослых. У подростков 12 -13 лет содержание гемоглобина в эритроцитах и уровень самих эритроцитов соответствует норме взрослых людей.

    Повышенное содержание эритроцитов в крови называется эритроцитозом , который бывает абсолютным (истинным) и перераспределительным. Перераспределительный эритроцитоз патологией не является и возникает, когда эритроциты в крови повышены при определенных обстоятельствах:

    1. Пребывание в горной местности;
    2. Активный физический труд и спорт;
    3. Психоэмоциональное возбуждение;
    4. Дегидратация (потеря организмом жидкости при диарее, рвоте и т. д.).

    Высокие показатели содержания эритроцитов в крови являются признаком патологии и истинного эритроцитоза, если они стали результатом усиленного образования красных кровяных телец, вызванного неограниченной пролиферацией (размножением) клетки-предшественницы и ее дифференцировки в зрелые формы эритроцитов ().

    Снижение концентрации красных клеток крови называют эритропенией . Она наблюдается при кровопотере, угнетении эритропоэза, распаде эритроцитов () под действием неблагоприятных факторов. Низкие эритроциты в крови и пониженное содержание Hb в эритроцитах является признаком .

    О чем говорит аббревиатура?

    Современные гематологические анализаторы, помимо гемоглобина (HGB), пониженного или повышенного содержания эритроцитов в крови (RBC), (HCT) и других привычных анализов, могут рассчитывать и другие показатели, которые обозначаются латинской аббревиатурой и бывают совсем не понятны читателю:

    Кроме всех перечисленных достоинств эритроцитов, хочется отметить еще одно:

    Эритроциты считают зеркалом, отражающим состояние многих органов. Своеобразным индикатором, способным «почувствовать» неполадки или позволяющим следить за течением патологического процесса, является .

    Большому кораблю – большое плавание

    Почему красные кровяные клетки так важны для диагностики многих патологических состояний? Их особая роль вытекает и формируется в силу уникальных возможностей, а чтобы читатель мог себе представить истинную значимость эритроцитов, попробуем перечислить их обязанности в организме.

    Поистине, функциональные задачи красных кровяных клеток широки и многообразны:

    1. Они осуществляют транспортировку кислорода к тканям (с участием гемоглобина).
    2. Переносят углекислый газ (с участием, помимо гемоглобина, фермента карбоангидразы и ионообменника Cl- /HCO 3).
    3. Выполняют защитную функцию, так как способны адсорбировать вредные вещества и переносить на своей поверхности антитела (иммуноглобулины), компоненты комплементарной системы, образованные иммунные комплексы (Ат-Аг), а также синтезировать антибактериальное вещество, называемое эритрином .
    4. Участвуют в обмене и регуляции водно-солевого равновесия.
    5. Обеспечивают питание тканей (эритроциты адсорбируют и переносят аминокислоты).
    6. Участвуют в поддержании информационных связей в организме за счет переноса макромолекул, которые эти связи обеспечивают (креаторная функция).
    7. Содержат тромбопластин, который выходит из клетки при разрушении эритроцитов, что является сигналом для системы свертывания начать гиперкоагуляцию и образование . Кроме тромбопластина, эритроциты несут гепарин, препятствующий тромбообразованию. Таким образом, активное участие эритроцитов в процессе свертывания крови – очевидно.
    8. Красные клетки крови способны подавлять высокую иммунореактивность (выполняют роль супрессоров), что может быть использовано в лечении различных опухолевых и аутоиммунных заболеваний.
    9. Участвуют в регуляции производства новых клеток (эритропоэз) путем освобождения из разрушенных старых эритроцитов эритропоэтических факторов.

    Разрушаются красные кровяные тельца преимущественно в печени и селезенке с образованием продуктов распада ( , железо). Кстати, если рассматривать каждую клетку по отдельности, то она будет не такой уж и красной, скорее, желтовато – красной. Скапливаясь в огромные миллионные массы, они, благодаря гемоглобину, в них находящемуся, становятся такими, как мы привыкли их видеть – насыщенно-красного цвета.

    Видео: урок по эритроцитам и функциям крови

    Углекислый газ является продуктом метаболизма клеток тканей и поэтому переносится кровью от тканей к легким. Углекислый газ выполняет жизненно важную роль в поддержании во внутренних средах организма уровня рН механизмами кислотно-основного равновесия. Поэтому транспорт углекислого газа кровью тесно взаимосвязан с этими механизмами.

    В плазме крови небольшое количество углекислого газа находится в растворенном состоянии; при РС02= 40 мм рт. ст. переносится 2,5 мл/100 мл крови углекислого газа, или 5 %. Количество растворенного в плазме углекислого газа в линейной зависимости возрастает от уровня РС02.

    В плазме крови углекислый газ реагирует с водой с образованием Н+ и HCO3. Увеличение напряжения углекислого газа в плазме крови вызывает уменьшение величины ее рН. Напряжение углекислого газа в плазме крови может быть изменено функцией внешнего дыхания, а количество ионов водорода или рН - буферными системами крови и HCO3, например путем их выведения через почки с мочой. Величина рН плазмы крови зависит от соотношения концентрации растворенного в ней углекислого газа и ионов бикарбоната. В виде бикарбоната плазмой крови, т. е. в химически связанном состоянии, переносится основное количество углекислого газа - порядка 45 мл/100 мл крови, или до 90 %. Эритроцитами в виде карбаминового соединения с белками гемоглобина транспортируется примерно 2,5 мл/100 мл крови углекислого газа, или 5 %. Транспорт углекислого газа кровью от тканей к легким в указанных формах не связан с явлением насыщения, как при транспорте кислорода, т. е. чем больше образуется углекислого газа, тем большее его количество транспортируется от тканей к легким. Однако между парциальным давлением углекислого газа в крови и количеством переносимого кровью углекислого газа имеется криволинейная зависимость: кривая диссоциации углекислого газа.

    Карбоангидраза . (синоним: карбонатдегидратаза, карбонатгидролиаза) - фермент, катализирующий обратимую реакцию гидратации диоксида углерода: СО 2 + Н 2 О Û Н 2 СО 3 Û Н + + НСО 3 . Содержится в эритроцитах, клетках слизистой оболочки желудка, коре надпочечников, почках, в незначительных количествах - в ц.н.с., поджелудочной железе и других органах. Роль карбоангидразы в организме связана с поддержанием кислотно-щелочного равновесия, транспортом СО 2 , образованием соляной кислоты слизистой оболочкой желудка. Активность карбоангидразы в крови в норме довольно постоянна, но при некоторых патологических состояниях она резко меняется. Повышение активности карбоангидразы в крови отмечается при анемиях различного генеза, нарушениях кровообращения II-III степени, некоторых заболеваниях легких (бронхоэктазах, пневмосклерозе), а также при беременности. Снижение активности этого фермента в крови происходит при ацидозе почечного генеза, гипертиреозе. При внутрисосудистом гемолизе активность карбоангидразы появляется в моче, в то время как в норме она отсутствует. Контролировать активность карбоангидразы в крови целесообразно во время оперативных вмешательств на сердце и легких, т.к. она может служить показателем адаптивных возможностей организма, а также при терапии ингибиторами карбоангидразы - гипотиазидом, диакарбом.